Aubrey Blecher1, Arnold Knopfmacher1
1The John Knopfmacher Centre for Applicable Analysis and Number Theory, School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
Abstract:

For \(r=1,2,…, 6\), we obtain generating functions \(F^{(r)}_{k}(y)\) for words over the alphabet \([k]\), where \(y\) tracks the number of parts and \([y^n]\) is the total number of distinct adjacent \(r\)-tuples in words with \(n\) parts. In order to develop these generating functions for \(1\le r\le 3\), we make use of intuitive decompositions but for larger values of \(r\), we switch to the cluster analysis method for decorated texts that was introduced by Bassino et al. Finally, we account for the coefficients of these generating functions in terms of Stirling set numbers. This is done by putting forward the full triangle of coefficients for all the sub-cases where \(r=5\) and 6. This latter is shown to depend on both periodicity and number of letters used in the \(r\)-tuples.

Chris Busenhart1, Norbert Hungerbühler1, William Xu1
1Department of Mathematics, ETH Zentrum, Rämistrasse;101, 8092 Zürich, Switzerland
Abstract:

We consider the following variant of the round-robin scheduling problem: \(2n\) people play a number of rounds in which two opposing teams of \(n\) players are reassembled in each round. Each two players should play at least once in the same team, and each two players should play at least once in opposing teams. We provide an explicit formula for calculating the minimal numbers of rounds needed to satisfy both conditions. Moreover, we also show how one can construct the corresponding playing schedules.

Hamza Ben Brahim1, Mohamed Y. Sayar1
1Faculty of Science of Sfax, Department of Mathematics Soukra Road km 4, PO Box 802, 3018 Sfax, Tunisia
Abstract:

Two binary structures \(\mathfrak{R}\) and \(\mathfrak{R’}\) on the same vertex set \(V\) are \((\leq k)\)-hypomorphic for a positive integer \(k\) if, for every set \(K\) of at most \(k\) vertices, the two binary structures induced by \(\mathfrak{R}\) and \(\mathfrak{R’}\) on \(K\) are isomorphic. A binary structure \(\mathfrak{R}\) is \((\leq k)\)-reconstructible if every binary
structure \(\mathfrak{R’}\) that is \((\leq k)\)-hypomorphic to \(\mathfrak{R}\) is isomorphic to \(\mathfrak{R}\). In this paper, we describe the pairs of \((\leq 3)\)-hypomorphic posets and the pairs of \((\leq 3)\)-hypomorphic bichains. As a consequence, we characterize the \((\leq 3)\)-reconstructible posets and the \((\leq 3)\)-reconstructible bichains. This answers a question suggested by Y. Boudabbous and C. Delhommé during a personal communication.

G. Mehak1, A. A. Bhatti1
1Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, B-Block, Faisal Town, Lahore, Pakistan
Abstract:

A tremendous amount of drug experiments revealed that there exists a strong inherent relation between the molecular structures of drugs and their biomedical and pharmacology characteristics. Due to the effectiveness for pharmaceutical and medical scientists of their ability to grasp the biological and chemical characteristics of new drugs, analysis of the bond incident degree (BID) indices is significant of testing the chemical and pharmacological characteristics of drug molecular structures that can make up the defects of chemical and medicine experiments and can provide the theoretical basis for the manufacturing of drugs in pharmaceutical engineering. Such tricks are widely welcomed in developing areas where enough money is lacked to afford sufficient equipment, relevant chemical reagents, and human resources which are required to investigate the performance and the side effects of existing new drugs. This work is devoted to establishing a general expression for calculating the bond incident degree (BID) indices of the line graphs of various well-known chemical structures in drugs, based on the drug molecular structure analysis and edge dividing technique, which is quite common in drug molecular graphs.

Mohit Kumar1
1Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University Mathura, Uttar Pradesh 281406, India
Abstract:

In this paper, we introduce a graph structure, called component intersection graph, on a finite dimensional vector space \(\mathbb{V}\). The connectivity, diameter, maximal independent sets, clique number, chromatic number of component intersection graph have been studied.

Adrián Vázquez Ávila1
1Subdirección de Ingeniería y Posgrado Universidad Aeronáutica en Querétaro Parque Aeroespacial de Querétaro 76278, Querétaro, México
Abstract:

A linear system is a pair \((P,\mathcal{L})\) where \(\mathcal{L}\) is a finite family of subsets on a finite ground set \(P\) such that any two subsets of \(\mathcal{L}\) share at most one element. Furthermore, if for every two subsets of \(\mathcal{L}\) share exactly one element, the linear system is called intersecting. A linear system \((P,\mathcal{L})\) has rank \(r\) if the maximum size of any element of \(\mathcal{L}\) is \(r\). By \(\gamma(P,\mathcal{L})\) and \(\nu_2(P,\mathcal{L})\) we denote the size of the minimum dominating set and the maximum 2-packing of a linear system \((P,\mathcal{L})\), respectively. It is known that any intersecting linear system \((P,\mathcal{L})\) of rank \(r\) is such that \(\gamma(P,\mathcal{L})\leq r-1\). Li et al. in [S. Li, L. Kang, E. Shan and Y. Dong, The finite projective plane and the 5-Uniform linear intersecting hypergraphs with domination number four, Graphs and 34 Combinatorics (2018) , no.~5, 931–945.] proved that every intersecting linear system of rank 5 satisfying \(\gamma(P,\mathcal{L})=4\) can be constructed from a 4-uniform intersecting linear subsystem \((P^\prime,\mathcal{L}^\prime)\) of the projective plane of order 3 satisfying \(\tau(P^\prime,\mathcal{L}^\prime)=\nu_2(P^\prime,\mathcal{L}^\prime)=4\), where \(\tau(P^\prime,\mathcal{L}^\prime)\) is the transversal number of \((P^\prime,\mathcal{L}^\prime)\). In this paper, we give an alternative proof of this result given by Li et al., giving a complete characterization of these 4-uniform intersecting linear subsystems. Moreover, we prove a general case, that is, we prove if $q$ is an odd prime power and \((P,\mathcal{L})\) is an intersecting linear system of rank \((q+2)\) satisfying \(\gamma(P,\mathcal{L})=q+1\), then this linear system can be constructed from a spanning \((q+1)\)-uniform intersecting linear subsystem \((P^\prime,\mathcal{L}^\prime)\) of the projective plane of order \(q\) satisfying \(\tau(P^\prime,\mathcal{L}^\prime)=\nu_2(P^\prime,\mathcal{L}^\prime)=q+1\).

Bart De Bruyn1, Mou Gao1
1Department of Mathematics: Algebra and Geometry, Ghent. University, Krijgslaan 281 (S25), B-9000 Gent, Belgium
Abstract:

We classify all near hexagons of order \((3,t)\) that contain a big quad. We show that, up to isomorphism, there are ten such near hexagons.

H Naresh Kumar1, Y B Venkatakrishnan1
1Department of Mathematics, School of Arts, Science, Humanities and Education, SASTRA Deemed University, Tanjore, India
Abstract:

Let \(G=(V,E)\) be a simple graph. A vertex \(v\in V(G)\) ve-dominates every edge \(uv\) incident to \(v\), as well as every edge adjacent to these incident edges. A set
\(D\subseteq V(G)\) is a vertex-edge dominating set if every edge of \(E(G)\) is ve-dominated by a vertex of \(D.\) The MINIMUM VERTEX-EDGE DOMINATION problem is to find a vertex-edge dominating set of minimum cardinality. A linear time algorithm to find the minimum vertex-edge dominating set for proper interval graphs is proposed. The vertex-edge domination problem is proved to be APX-complete for bounded-free graphs and NP-Complete for Chordal bipartite and Undirected Path graphs.

Chunling Tong1, Senyuan Su1, Yuansheng Yang2
1College of Information Science and Electricity Engineering, Shandong Jiaotong University, Jinan 250357, China
2College of Computer Science, Dalian University of Technology, Dalian 116024, China
Abstract:

In this paper, we investigate the \((d,1)\)-total labelling of generalized Petersen graphs \(P(n,k)\) for \(d\geq 3\). We find that the \((d,1)\)-total number of \(P(n,k)\) with \(d\geq 3\) is \(d+3\) for even \(n\) and odd \(k\) or even \(n\) and \(k=\frac{n}{2}\), and \(d+4\) for all other cases.

Marta Na Chen1, Wenchang Chu2
1School of Mathematics and Statistics, Zhoukou Normal University Zhoukou (Henan), China
2Via Dalmazio Birago 9E, Lecce 73100, Italy
Abstract:

By employing Kummer and Thomae transformations, we examine four classes of nonterminating \(_3F_2\)(1)-series with five integer parameters. Several new summation formulae are established in closed form.

Abstract:

Achieving accurate prediction of financial market fluctuations is beneficial for investors to make decisions, while machine learning algorithms can utilize a large amount of data for training and learning, which has good effect on predicting financial market fluctuations. The article first analyzes the financial dataset, and then constructs a feature selection model by combining Boruta and SHAP to screen the financial data features. Based on the LSTM model, a new Dropout layer and fully connected layer are designed to construct the AMP-LSTM model to realize the prediction of financial market fluctuations. The Boruta SHAP algorithm has a RMSPE of 0.242, which is good for screening. The prediction performance of the AMP-LSTM model is significantly better than that of the traditional LSTM (p<0.01), and the predicted values are closer to the actual values. The method in this paper performs better than MLP, RNN and other methods in general in terms of error performance when predicting indicators such as WTI, Brent, LGO, etc., and is able to realize the prediction of financial market volatility in the digital economy environment.

Somnath Bera1, Kinkar Chandra Das2
1School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China.
2Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Abstract:

Let \(G=(V,\,E)\) be a simple graph with vertex set \(V(G)\) and edge set \(E(G)\). The Lanzhou index of a graph \(G\) is defined by \(Lz(G)=\sum\limits_{u \in V(G)} d_u^2\overline{d}_u\), where \(d_u\) (\(\overline{d}_u \) resp.) denotes the degree of the vertex \(u\) in \(G\) (\(\overline{G}\), the complement graph of \(G\) resp.). It has predictive powers to provide insights of chemical relevant properties of chemical graph structures. In this paper we discuss some properties of Lanzhou index. Several inequalities having lower and upper bound for the Lanzhou index in terms of first, second and third Zagreb indices, radius of graph, eccentric connectivity index, Schultz index, inverse sum indeg index and symmetric division deg index, are discussed. At the end the Lanzhou index of corona and join of graphs have been derived.

Christian Rubio-Montiel1
1División de Matemáticas e Ingeniería, FES Acatlán, Universidad Nacional Autónoma de México, 53150, Naucalpan, Mexico.
Abstract:

We define an extremal \((r|\chi)\)-graph as an \(r\)-regular graph with chromatic number \(\chi\) of minimum order. We show that the Turán graphs \(T_{ak,k}\), the antihole graphs and the graphs \(K_k\times K_2\) are extremal in this sense. We also study extremal Cayley \((r|\chi)\)-graphs and we exhibit several \((r|\chi)\)-graph constructions arising from Turán graphs.

Jishnu Sen1, Srinivasa Rao Kola1
1Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal Mangalore – 575025, India.
Abstract:

A dominating broadcast of a graph \(G\) is a function \(f : V(G) \rightarrow \lbrace 0, 1, 2, \dots ,\text{diam}(G)\rbrace\) such that \(f(v) \leqslant e(v)\) for all \(v \in V(G)\), where \(e(v)\) is the eccentricity of \(v\), and for every vertex \(u \in V(G)\), there exists a vertex \(v\) with \(f(v) > 0\) and \(\text{d}(u,v) \leqslant f(v)\). The cost of \(f\) is \(\sum_{v \in V(G)} f(v)\). The minimum of costs over all the dominating broadcasts of \(G\) is called the broadcast domination number \(\gamma_{b}(G)\) of \(G\). A graph $G$ is said to be radial if \(\gamma_{b}(G)=\text{rad}(G)\). In this article, we give tight upper and lower bounds for the broadcast domination number of the line graph \(L(G)\) of \(G\), in terms of \(\gamma_{b}(G)\), and improve the upper bound of the same for the line graphs of trees. We present a necessary and sufficient condition for radial line graphs of central trees, and exhibit constructions of infinitely many central trees \(T\) for which \(L(T)\) is radial. We give a characterization for radial line graphs of trees, and show that the line graphs of the \(i\)-subdivision graph of \(K_{1,n}\) and a subclass of caterpillars are radial. Also, we show that \(\gamma_{b}(L(C))=\gamma(L(C))\) for any caterpillar \(C\).

P. Titus1, S. Antin Mary2
1Department of Mathematics, University College of Engineering Nagercoil, Anna University, Tirunelveli Region.
2Department of Mathematics,Holy Cross College (Autonomous), Nagercoil, India.
Abstract:

In this paper we introduce the concept of independent fixed connected geodetic number and investigate its behaviours on some standard graphs. Lower and upper bounds are found for the above number and we characterize the suitable graphs achieving these bounds. We also define two new parameters connected geo-independent number and upper connected geo-independent number of a graph. Few characterization and realization results are formulated for the new parameters. Finally an open problem is posed.

Sunny Kumar Sharma1, Vijay Kumar Bhat2
1Department of Mathematics, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India.
2School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, India.
Abstract:

Let \(E(H)\) and \(V(H)\) denote the edge set and the vertex set of the simple connected graph \(H\), respectively. The mixed metric dimension of the graph \(H\) is the graph invariant, which is the mixture of two important graph parameters, the edge metric dimension and the metric dimension. In this article, we compute the mixed metric dimension for the two families of the plane graphs viz., the Web graph \(\mathbb{W}_{n}\) and the Prism allied graph \(\mathbb{D}_{n}^{t}\). We show that the mixed metric dimension is non-constant unbounded for these two families of the plane graph. Moreover, for the Web graph \(\mathbb{W}_{n}\) and the Prism allied graph \(\mathbb{D}_{n}^{t}\), we unveil that the mixed metric basis set \(M_{G}^{m}\) is independent.

A. Lourdusamy1, F. Joy Beaula2, F. Patrick1
1Department of Mathematics, St. Xavier’s College (Autonomous), Palayamkottai-627002, India.
2Center: PG and Research Department of Mathematics, St. Xavier’s College (Autonomous), Palayamkottai-627002, Manonmaniam Sundaranar University, Abisekapatti-627012, Tamilnadu, India.
Abstract:

Consider a total labeling \(\xi\) of a graph \(G\). For every two different edges \(e\) and \(f\) of \(G\), let \(wt(e) \neq wt(f)\) where weight of \(e = xy\) is defined as \(wt(e)=|\xi(e) – \xi(x) – \xi(y)|\). Then \(\xi\) is called edge irregular total absolute difference \(k\)-labeling of \(G\). Let \(k\) be the minimum integer for which there is a graph \(G\) with edge irregular total absolute difference labeling. This \(k\) is called the total absolute difference edge irregularity strength of the graph \(G\), denoted \(tades(G)\). We compute \(tades\) of \(SC_{n}\), disjoint union of grid and zigzag graph.

Wei Ge1, Jun Yue2
1Shandong University of Engineering and Vocational Technology, Ji’nan, Shandong, China.
2School of Mathematics Science, Tiangong University, Tianjin, China.
Abstract:

A total dominator coloring of \(G\) without isolated vertex is a proper coloring of the vertices of \(G\) in which each vertex of \(G\) is adjacent to every vertex of some color class. The total dominator chromatic number \(\chi^t_d(G)\) of \(G\) is the minimum number of colors among all total dominator coloring of \(G\). In this paper, we will give the polynomial time algorithms to computing the total dominator coloring number for \(P_4\)-reducible and \(P_4\)-tidy graphs.

Solomon Stalin Kumar1
1Department of Mathematics, The American College, Madurai – 625 002, Tamilnadu, India.
Abstract:

An \(H\)-(a,d)-antimagic labeling in a \(H\)-decomposable graph \(G\) is a bijection \(f: V(G)\cup E(G)\rightarrow {\{1,2,…,p+q\}}\) such that \(\sum f(H_1),\sum f(H_2),\cdots, \sum f(H_h)\) forms an arithmetic progression with difference \(d\) and first element \(a\). \(f\) is said to be \(H\)-\(V\)-super-\((a,d)\)-antimagic if \(f(V(G))={\{1,2,…,p\}}\). Suppose that \(V(G)=U(G) \cup W(G)\) with \(|U(G)|=m\) and \(|W(G)|=n\). Then \(f\) is said to be \(H\)-\(V\)-super-strong-\((a,d)\)-antimagic labeling if \(f(U(G))={\{1,2,…,m\}}\) and \(f(W(G))={\{m+1,m+2,…,(m+n=p)\}}\). A graph that admits a \(H\)-\(V\)-super-strong-\((a,d)\)-antimagic labeling is called a \(H\)-\(V\)-super-strong-\((a,d)\)-antimagic decomposable graph. In this paper, we prove that complete bipartite graphs \(K_{m,n}\) are \(H\)-\(V\)-super-strong-\((a,d)\)-antimagic decomposable with both \(m\) and \(n\) are even.

Stella Maragatham R1, Subramanian A 2
1Department of Mathematics, Queen Mary’s College, Chennai-600 004, Tamil Nadu, India.
2Department of Mathematics, Presidency College, Chennai-600005, Tamil Nadu, India.
Abstract:

A Grundy \(k\)-coloring of a graph \(G\) is a proper \(k\)-coloring of vertices in \(G\) using colors \(\{1, 2, \cdots, k\}\) such that for any two colors \(x\) and \(y\), \(x<y\), any vertex colored \(y\) is adjacent to some vertex colored \(x\). The First-Fit or Grundy chromatic number (or simply Grundy number) of a graph \(G\), denoted by \(\Gamma \left(G\right)\), is the largest integer \(k\), such that there exists a Grundy \(k\)-coloring for \(G\). It can be easily seen that \(\Gamma \left(G\right)\) equals to the maximum number of colors used by the greedy (or First-Fit) coloring of \(G\). In this paper, we obtain the Grundy chromatic number of Cartesian Product of path graph, complete graph, cycle graph, complete graph, wheel graph and star graph.

A. W. Aboutahoun1,2, F. El-Safty3
1Zewail City of Science and Technology, $6^{\textrm{th}}$ of October City, Giza, Egypt.
2Department of Mathematics, Faculty of Science, Alexandria University, Egypt.
3Faculty of Science, Damanhour University, Damanhour, Egypt.
Abstract:

Determining the Tutte polynomial \(T(G;x,y)\) of a graph network \(G\) is a challenging problem for mathematicians, physicians, and statisticians. This paper investigates a self-similar network model \(M(t)\) and derives its Tutte polynomial. In addition, we evaluate exact explicit formulas for the number of acyclic orientations and spanning trees of it as applications of the Tutte polynomial. Finally, we use the derived \(T(M(t);x,y)\) to obtain the Tutte polynomial of another self-similar model \(N(t)\) presented in [1] and correct the main result discussed in [1] by Ma et al. and test our result numerically by using Matlab.

Yingbin Ma1, Kairui Nie1
1College of Mathematics and Information Science Henan Normal University, Xinxiang 453007, P.R. China
Abstract:

A vertex-colouring of a graph \(\Gamma\) is rainbow vertex connected if every pair of vertices \((u,v)\) in \(\Gamma\) there is a \(u-v\) path whose internal vertices have different colours. The rainbow vertex connection number of a graph \(\Gamma\), is the minimum number of colours needed to make \(\Gamma\) rainbow vertex connected, denoted by \(rvc(\Gamma)\). Here, we study the rainbow vertex connection numbers of middle and total graphs. A total-colouring of a graph \(\Gamma\) is total rainbow connected if every pair of vertices \((u,v)\) in \(\Gamma\) there is a \(u-v\) path whose edges and internal vertices have different colours. The total rainbow connection number of \(\Gamma\), is the minimum number of colours required to colour the edges and vertices of \(\Gamma\) in order to make \(\Gamma\) total rainbow connected, denoted by \(trc(\Gamma)\). In this paper, we also research the total rainbow connection numbers of middle and total graphs.

Hanyuan Deng1, S. Balachandran2,3, S. Raja Balachandar4
1College of Mathematics and Statistics, Hunan Normal University, Changsha,Hunan 410081, P. R. China.
2Department of Mathematics and Applied Mathematics, University of the Free State, Bloemfontein, South Africa.
3Department of Mathematics, School of Arts, Sciences and Humanities, SASTRA Deemed University, Thanjavur, India.
4Department of Mathematics, School of Arts, Sciences and Humanities, SASTRA Deemed University, Thanjavur, India.
Abstract:

The harmonic index \(H(G)\) of a graph \(G\) is defined as the sum of the weights \(\frac{2}{d_{u}+ d_{v}}\) of all edges \(uv\) of \(G\), where \(d_{u}\) denotes the degree of a vertex \(u\). Delorme et al. [1] (2002) put forward a conjecture concerning the minimum Randić index among all connected graphs with \(n\) vertices and the minimum degree at least \(k\). Motivated by this paper, a conjecture related to the minimum harmonic index among all connected graphs with \(n\) vertices and the minimum degree at least \(k\) was posed in [2]. In this work, we show that the conjecture is true for a connected graph on $n$ vertices with \(k\) vertices of degree \(n-1\), and it is also true for a \(k\)-tree. Moreover, we give a shorter proof of Liu’s result [3].

Minahal Arshad1, M. Mobeen Munir1
1Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
Abstract:

Let \(L\) be a unital ring with characteristic different from \(2\) and \(\mathcal{O}(L)\) be an algebra of Octonion over \(L\). In the present article, our attempt is to present the characterization as well as the matrix representation of some variants of derivations on \(\mathcal{O}(L)\). The matrix representation of Lie derivation of \(\mathcal{O}(L)\) and its decomposition in terms of Lie derivation and Jordan derivation of \(L\) and inner derivation of \(\mathcal{O}\) is presented. The result about the decomposition of Lie centralizer of \(\mathcal{O}\) in terms of Lie centralizer and Jordan centralizer of \(L\) is given. Moreover, the matrix representation of generalized Lie derivation (also known as \(D\)-Lie derivation) of \(\mathcal{O}(L)\) is computed.

A. Lourdusamy1, S. Jenifer Wency2, F. Patrick1
1Department of Mathematics, St. Xavier’s College (Autonomous),Palayamkottai – 627 002, Tamilnadu, India.
2Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India.
Abstract:

A sum divisor cordial labeling of a graph \(G\) with vertex set \(V(G)\) is a bijection \(f\) from \(V(G)\) to \(\{1,2,\cdots,|V(G)|\}\) such that an edge \(uv\) is assigned the label \(1\) if \(2\) divides \(f(u)+f(v)\) and \(0\) otherwise; and the number of edges labeled with \(1\) and the number of edges labeled with \(0\) differ by at most \(1\). A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we discuss the sum divisor cordial labeling of transformed tree related graphs.

Gary Chartrand1, James Hallas1, Ping Zhang1
1Department of Mathematics Western Michigan University Kalamazoo, MI 49008, USA.
Abstract:

For a graph \(G\) and a positive integer \(k\), a royal \(k\)-edge coloring of \(G\) is an assignment of nonempty subsets of the set \(\{1, 2, \ldots, k\}\) to the edges of \(G\) that gives rise to a proper vertex coloring in which the color assigned to each vertex \(v\) is the union of the sets of colors of the edges incident with \(v\). If the resulting vertex coloring is vertex-distinguishing, then the edge coloring is a strong royal \(k\) coloring. The minimum positive integer \(k\) for which a graph has a strong royal \(k\)-coloring is the strong royal index of the graph. The primary emphasis here is on strong royal colorings of trees.

Jagannathan. M1, Vernold Vivin. J2, Veninstine Vivik. J3
1Department of Mathematics, RVS College of Engineering and Technology, Coimbatore-641 402, Tamil Nadu, India.
2Department of Mathematics, University College of Engineering Nagercoil, (Anna University Constituent College), Nagercoil – 629 004, Tamil Nadu, India.
3Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore-641 114, Tamil Nadu, India
Abstract:

The coloring of all the edges of a graph \(G\) with the minimum number of colors, such that the adjacent edges are allotted a different color is known as the proper edge coloring. It is said to be equitable, if the number of edges in any two color classes differ by atmost one. In this paper, we obtain the equitable edge coloring of splitting graph of \(W_n\), \(DW_n\) and \(G_n\) by determining its edge chromatic number.

Ali Ahmad1
1College of Computer Science & Information Technology, Jazan University, Jazan, Saudi Arabia.
Abstract:

Let us consider a~simple connected undirected graph \(G=(V,E)\). For a~graph \(G\) we define a~\(k\)-labeling \(\phi: V(G)\to \{1,2, \dots, k\}\) to be a~distance irregular vertex \(k\)-labeling of the graph \(G\) if for every two different vertices \(u\) and \(v\) of \(G\), one has \(wt(u) \ne wt(v),\) where the weight of a~vertex \(u\) in the labeling \(\phi\) is \(wt(u)=\sum\limits_{v\in N(u)}\phi(v),\) where \(N(u)\) is the set of neighbors of \(u\). The minimum \(k\) for which the graph \(G\) has a~distance irregular vertex \(k\)-labeling is known as distance irregularity strength of \(G,\) it is denoted as \(dis(G)\). In this paper, we determine the exact value of the distance irregularity strength of corona product of cycle and path with complete graph of order \(1,\) friendship graph, Jahangir graph and helm graph. For future research, we suggest some open problems for researchers of the same domain of study.

Muhammad Junaid Ali Junjua1, Khurram Shabbir1, Asim Naseem1
1Govt. College University, Lahore, Pakistan.
Abstract:

Elimination ideals are monomial ideals associated to simple graphs, not necessarily square–free, was introduced by Anwar and Khalid. These ideals are Borel type. In this paper, we obtain sharp combinatorial upper bounds of the Castelnuovo–Mumford regularity of elimination ideals corresponding to certain family of graphs.

Asim Naseem1, Khurram Shabbir1, M. Ramzan1
1Govt. College University, Lahore, Pakistan.
Abstract:

Let \(G\) be a simple connected graph with vertex set \(V\) and diameter \(d\). An injective function \(c: V\rightarrow \{1,2,3,\ldots\}\) is called a radio labeling of \(G\) if \({|c(x) c(y)|+d(x,y)\geq d+1}\) for all distinct \(x,y\in V\), where \(d(x,y)\) is the distance between vertices \(x\) and \(y\). The largest number in the range of \(c\) is called the span of the labeling \(c\). The radio number of \(G\) is the minimum span taken over all radio labelings of \(G\). For a fixed vertex \(z\) of \(G\), the sequence \((l_1,l_2,\ldots,l_r)\) is called the level tuple of \(G\), where \(l_i\) is the number of vertices whose distance from \(z\) is \(i\). Let\(J^k(l_1,l_2,\ldots,l_r)\) be the wedge sum (i.e. one vertex union) of \(k\geq2\) graphs having same level tuple \((l_1,l_2,\ldots,l_r)\). Let \(J(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r} {l’_r})\) be the wedge sum of two graphs of same order, having level tuples  \((l_1,l_2,\ldots,l_r)\) and \((l’_1,l’_2,\ldots,l’_r)\). In this paper, we compute the radio number for some sub-families of \(J^k(l_1,l_2,\ldots,l_r)\) and \(J(\frac{l_1}{l’_1},\frac{l_2}{l’_2},\ldots,\frac{l_r}{l’_r})\).

S. Gomathi1, P. Venugopal1, T. Arputha Jose1
1Department of Mathematics, SSN College of Engineering, Kalavakkam, India.
Abstract:

An antipodal labeling is a function \(f\ \)from the vertices of \(G\) to the set of natural numbers such that it satisfies the condition \(d(u,v) + \left| f(u) – f(v) \right| \geq d\), where d is the diameter of \(G\ \)and \(d(u,v)\) is the shortest distance between every pair of distinct vertices  \(u\) and \(v\) of \(G.\) The span of an antipodal labeling \(f\ \)is \(sp(f) = \max\{|f(u) – \ f\ (v)|:u,\ v\, \in \, V(G)\}.\) The antipodal number of~G, denoted by~an(G), is the minimum span of all antipodal labeling of~G. In this paper, we determine the antipodal number of Mongolian tent and Torus grid.

Yaping Mao1, Chengfu Ye1, Hengzhe Li2, Shumin Zhang1
1 Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, P.R. China
2College of Mathematics and Information Science. Henan Normal University, Xingxiang 453007 China
Abstract:

Two graphs are defined to be adjointly equivalent if their complements are chromatically equivalent. Recently, we introduced a new invariant of a graph \(G\), denoted as \(R_5(G)\). Using this invariant and the properties of the adjoint polynomials, we completely determine the adjoint equivalence class of \(\psi_n^3({n-3,1})\). According to the relations between adjoint polynomial and chromatic polynomial, we also simultaneously determine the chromatic equivalence class of \(\psi_n^3({n-3,1})\).

Kiirgat Aker1, Aysin Erkan Giirsoy2
1 Middle East Technical University, Northern Cyprus Campus 99798 Kaltkank, Gizelyurt, Mersin 10, Turkey
2Istanbul Technical University, Faculty of Sciences and Letters, Department of Mathematics, 34469 Maslak, Istanbul, Turkey
Abstract:

In this article, we prove a conjecture about the equality of two generating functions described in “From Parking Functions to Gelfand Pairs” (Aker, Can, 2012) attached to two sets whose cardinalities are given by Catalan numbers. We establish a combinatorial bijection between the two sets on which the two generating functions were based.

Li-Meng Xia1, Yuanlin Li2, Jiangtao Peng3
1Faculty Of Science, Jiangsu University, Zhenjiang, 212013, Jiangsu Pro., P.R. China
2Department of Mathematics, Brock University, St. Catharines, Ontario Canada L2S 3A1
3College of Science, Civil Aviation University of China, Tianjin, 300300, P.R. China
Abstract:

Let \(G\) be a finite cyclic group. Every sequence \(S\) of length \(l\) over \(G\) can be written in the form \(S = (x_1g) + \cdots + (x_lg)\), where \(g \in G\) and \(x_1, \ldots, x_l \in [1, ord(g)]\), and the index \(ind(S)\) of \(S\) is defined to be the minimum of \((x_1 + \cdots + x_l)/ord(g)\) over all possible \(g \in G\) such that \(\langle g \rangle = G\). Recently, the second and third authors determined the index of any minimal zero-sum sequence \(S\) of length \(5\) over a cyclic group of a prime order where \(S =g^2 \cdot (x_2g)\cdot (x_3g)\cdot (x_4g)\). In this paper, we determine the index of any minimal zero-sum sequence \(S\) of length \(5\) over a cyclic group of a prime power order. It is shown that if \(G = \langle g \rangle\) is a cyclic group of prime power order \(n = p^{\mu}\) with \(p \geq 7\) and \(\mu \geq 2\), and \(S = (x_1g) \cdot (x_2g) \cdot (x_3g) \cdot (x_4g) \cdot (x_5g)\) with \(x_1 = x_2\) is a minimal zero-sum sequence with \(\gcd(n, x_1, x_2, x_3, x_4, x_5) = 1\), then \(ind(S) = 2\) if and only if \(S = (mg) \cdot (mg) \cdot (m\frac{n-1}{2}g) \cdot (m\frac{n+3}{2}g) \cdot (m(n-3)g)\) where \(m\) is a positive integer such that \(\gcd(m,n) = 1\).

Lutz Volkmann1
1 Lehrstuhl II fiir Mathematik RWTH Aachen University 52056 Aachen, Germany
Abstract:

Let \(G\) be a graph with vertex set \(V(G)\). For any integer \(k \geq 1\), a signed \(k\)-dominating function is a function \(f: V(G) \rightarrow \{-1, 1\}\) satisfying \(\sum_{x \in N[v]} f(t) \geq k\) for every \(v \in V(G)\), where \(N[v]\) is the closed neighborhood of \(v\). The minimum of the values \(\sum_{v \in V(G)} f(v)\), taken over all signed \(k\)-dominating functions \(f\), is called the signed \(k\)-domination number. In this note, we present some new lower bounds on the signed \(k\)-domination number of a graph. Some of our results improve known bounds.

Esref Gurel1, Mustafa Asci2
1Pamukkale University Science and Arts Faculty Department of Mathematics Kinikli Denizlt Turkey
2Pamukkale University Science and Arts Faculty Department of Mathematics Kinikul Denizl1 Turkey
Abstract:

In this paper, we define and study the \(k\)-order Gaussian Fibonacci and Lucas numbers with boundary conditions. We identify and prove the generating functions, the Binet formulas, the summation formulas, matrix representation of \(k\)-order Gaussian Fibonacci numbers, and some significant relationships between \(k\)-order Gaussian Fibonacci and \(k\)-order Lucas numbers, connecting them with usual \(k\)-order Fibonacci numbers.

Zai Ping Lu1, Ying Bin Ma2
1Center For Combinatorics, Lpmc-Tjklc, Nankai University, Tian- Un 300071, P. R. China
2Center For Combinatorics, Lpmc-Tjklc, Nankai University, Tianhn 300071, P. R. China
Abstract:

A vertex-colored path is vertex-rainbow if its internal vertices have distinct colors. For a connected graph \(G\) with connectivity \(\kappa(G)\) and an integer \(k\) with \(1 \leq k \leq \kappa(G)\), the rainbow vertex \(k\)-connectivity of \(G\) is the minimum number of colors required to color the vertices of \(G\) such that any two vertices of \(G\) are connected by \(k\) internally vertex-disjoint vertex-rainbow paths. In this paper, we determine the rainbow vertex \(k\)-connectivities of all small cubic graphs of order \(8\) or less.

Omar Saeed 1ORIC ID
1 MIS Department, Business College, King Khalid University, Abha, KSA.
Abstract:

For a simple graph \(G = (V, E)\), a vertex labeling \(\alpha: V \rightarrow \{1, 2, \ldots, k\}\) is called a \(k\)-labeling. The weight of an edge \(xy\) in \(G\), denoted by \(w_\phi(xy)\), is the sum of the labels of end vertices \(x\) and \(y\), i.e., \(w_\phi(xy) = \phi(x) + \phi(y)\). A vertex \(k\)-labeling is defined to be an edge irregular \(k\)-labeling of the graph \(G\) if for every two different edges \(e\) and \(f\) there is \(w_\phi(e) \neq w_\phi(f)\). The minimum \(k\) for which the graph \(G\) has an edge irregular \(k\)-labeling is called the edge irregularity strength of \(G\), denoted by \(\mathrm{es}(G)\). In this paper, we determine the exact value for certain families of graphs with path \(P_2\).

Victor J. W. Guo1, Ya-Zhen Wang2
1School of Mathematical Sciences, Huaiyin Normal University, Huai’an, Jiangsu 223300, People’s Republic of China
2Department of Mathematics, East China Normal University, Shanghai 200241, People’s Republic of China
Abstract:

We give a \(q\)-analogue of some Dixon-like summation formulas obtained by Gould and Quaintance [Fibonacci Quart. 48 (2010), 56-61] and Chu [Integral Transforms Spec. Funct. 23 (2012), 251-261], respectively. For example, we prove that
\(\sum\limits_{k=0}^{2m} (-1)^{m-k} q^{\binom{m-k}{2}} \binom{2m} {k} \binom{x+k} {2m+r}\binom{x+2m-k} {2m+r}\) = \(\frac{q^{m(x-m-r)}\binom{2m}{m}}{\binom{2m+r}{m}}\binom{x}{m+r}\binom{x+m}{m+r}\) where \(\binom{x}{k}\) denotes the \(q\)-binomial coefficient.

Jinko Kanno1, Naoki Matsumoto2, Jianning Su3, Ko Yamamoto4
1Program of Mathematics and Statistics, Louisiana Tech University, USA,
2Graduate School of Environment and Information Sciences, Yokohama National University, Japan,
3St. Catharine College, USA,
4College of Education and Human Sciences, Yokohama National University, Japan,
Abstract:

A pentangulation is a simple plane graph such that each face is bounded by a cycle of length \(5\). We consider two diagonal transformations in pentangulations, called \(\mathcal{A}\) and \(\mathcal{B}\). In this paper, we shall prove that any two pentangulations with the same number of vertices can be transformed into each other by \(\mathcal{A}\) and \(\mathcal{B}\). In particular, if they are not isomorphic to a special pentangulation, then we do not need \(\mathcal{B}\).

Amalorpava Jerline J1, Benedict Michaelraj L2, Dhanalakshmi K1, Syamala P2
1Department of Mathematics, Holy Cross College, Trichy 620 002, India
2Department of Mathematics, St. Joseph’s College, Trichy 620 002, India
Abstract:

The harmonic index \(H(G)\) of a graph \(G\) is defined as the sum of the weights of all edges \(uv\) of \(G\), where the weight of \(uv\) is \(\frac{2}{d(u) + d(v)}\), with \(d(u)\) denoting the degree of the vertex \(u\) in \(G\). In this work, we compute the harmonic index of a graph with a cut-vertex and with more than one cut-vertex. As an application, this topological index is computed for Bethe trees and dendrimer trees. Also, the harmonic indices of Fasciagraph and a special type of trees, namely, polytree, are computed.

Zhongmei Qin1, Jianfeng Wang1,2, Kang Yang1
1Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China
2Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China
Abstract:

Let \(G^{\sigma}\) be an oriented graph obtained by assigning an orientation \(\sigma\) to the edge set of a simple undirected graph \(G\). Let \(S(G^{\sigma})\) be the skew adjacency matrix of \(G^{\sigma}\). The skew energy of \(G^{\sigma}\) is defined as the sum of the absolute values of all eigenvalues of \(S(G^{\sigma})\). In this paper, we give the skew energy order of a family of digraphs and determine the oriented bicyclic graphs of order \(n \geq 13\) with the first five largest skew energies, which extends the results of the paper [X. Shen, Y. Hou, C. Zhang, Bicyclic digraphs with extremal skew energy, Electron. J. Linear Algebra 23 (2012) 340-355].

Maorong Sun1, Lily J. Jin2
1Department of Mathematics, Jiangsu University, Jiangsu Zhenjiang 212013, P. R. China
2School of Mathematics, Nanjing Normal University, Taizhou College, Jiangsu, Taizhou 225300, P. R. China
Abstract:

Let \(P_n\) denote the \(n\)-th Catalan-Larcombe-French number. Recently, the \(2\)-log-convexity of the Catalan-Larcombe-French sequence was proved by Sun and Wu. Moreover, they also conjectured that the quotient sequence \(\{\frac{P_{n}}{P_{n-1}}\}_{n= 0}^\infty\) of the Catalan-Larcombe-French sequence is log-concave. In this paper, this conjecture is confirmed by utilizing the upper and lower bounds for \(\frac{P_{n}}{P_{n-1}}\) and finding a middle function \(f(n)\).

Mobeen Munir1, Abdul Rauf Nizami2, Zaffar Iqbal3, Huma Saeed4
1Division of Science and Technology, University of Education, Lahore-Pakistan
2Division of Science and Technology, University of Education, Lahore-Pakistan
3Department of Mathematics. University of Gujrat, Gujrat-Pakistan
4Division of Science and ‘Technology, University of Education, Lahore-Pakistan
Abstract:

It is claimed in [13] that the metric dimension of the Möbius ladder \(M_n\) is \(3\) when \(n \not\equiv 2 \pmod{8}\), but it is wrong; we give a counterexample when \(n \equiv 6 \pmod{8}\). In this paper, we not only give the correct metric dimension in this case but also solve the open problem regarding the metric dimension of \(M_n\) when \(n \equiv 2 \pmod{8}\). Moreover, we conclude that \(M_n\) has two subfamilies with constant metric dimensions.

Guoliang Hao1
1College of Science, East China University of Technology, Nanchang, Jiangxi 330013, P.R.China
Abstract:

An edge-colored graph \(G\) is (strong) rainbow connected if any two vertices are connected by a (geodesic) path whose edges have distinct colors. The (strong) rainbow connection number of a connected graph \(G\), denoted by \(\mathrm{src}(G)\) (resp. \(\mathrm{rc}(G)\)), is the smallest number of colors that are needed in order to make \(G\) (strong) rainbow connected. The join \(P_m \vee P_n\) of \(P_m\) and \(P_n\) is the graph consisting of \(P_m\cup P_n\), and all edges between every vertex of \(P_m\) and every vertex of \(P_n\), where \(P_m\) (resp. \(P_n\)) is a path of \(m\) (resp. \(n\)) vertices. In this paper, the precise values of \(\mathrm{rc}(P_m \vee P_n)\) and \(\mathrm{src}(P_m \vee P_n)\) are given for any positive integers \(m\) and \(n\).

Mohammadreza Rostami1, Modjtaba Ghorbani2
1Faculty of Science, Mahallat institute of Higher Education, Mahatiat,I. R. Iran
2Department of Mathematies, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785 — 136, 1 R. iran
Abstract:

Let \(MG(i,n)\) be a connected molecular graph without multiple edges on \(n\)vertices whose minimum degree of vertices is \(i\), where \(i \leq i \leq 4\). One of the newest topological indices is the first Geometric-Arithmetic index. In this paper, we determine the graph with the minimum and the maximum value of the first Geometric-Arithmetic index in the family of graphs \(M{G}(i,n)\),\(l\leq i \leq 3\).

Helin Gong1,2, Metrose Metsidik 3
1 Department of Fundamental Courses, Zhejiang Industry Polytechnic College Shaoxing, Zhejiang 312000, China
2Guangxi Colleges and Universities Key Laboratory of Mathematical and Statistical Model, Guangxi Normal University, Guangxi 541004, China
3School of Mathematical Science, Xiamen University Xiamen, Fujian 361005, China
Abstract:

Two graphs are said to be Tutte-equivalent if their Tutte polynomials are equal. In this paper, we provide several different constructions for Tutte-equivalent graphs, including some that are not self-complementary but Tutte-equivalent to their complements (the Akiyama-Harary problem) and some “large” Tutte-equivalent graphs obtained from “small” Tutte-equivalent graphs by \(2\)-sum operations.

Quan-Hui Yang1
1School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China
Abstract:

Let \(s(n, k) = \binom{6k}{3k} \binom{3k}{k} (\binom{3(n-k)}{n-k} / (2n-1) \binom{3n}{n})\). Recently, Guo confirmed a conjecture of \(Z.-W\). Sun by showing that \(s(n, k)\) is an integer for \(k = 0, 1, \ldots, n\). Let \(d = (3n + 2) / \gcd(3n + 2, 2n – 1)\). In this paper, we prove that \(s(n, k)\) is a multiple of the odd part of \(d\) for \(k = 0, 1, \ldots, n\). Furthermore, if \(\gcd(k, n) = 1\), then \(s(n, k)\) is also a multiple of \(n\). We also show that the \(2\)-adic order of \(s(n, k)\) is at least the sum of the digits in the binary expansion of \(3n\).

V.L.Stella Arputha Mary1, S. Navaneethakrishnan2, A. Nagarajan2
1 Department of Mathematics, St.Mary’s College, Tuticorin – 628 001.
2Department of Mathematics, V.O.C College, Tuticorin – 628 001. Tamil Nadu, India.
Abstract:

For any non-trivial abelian group \(A\) under addition, a graph \(G\) is said to be strong \(A\)-magic if there exists a labeling \(f\) of the edges of \(G\) with non-zero elements of \(A\) such that the vertex labeling \(f^+\) defined as \(f^+(v) = \sum f(uv)\) taken over all edges \(uv\) incident at \(v\) is a constant, and the constant is same for all possible values of \(|V(G)|\). A graph is said to be strong \(A\)-magic if it admits strong \(A\)-magic labeling. In this paper, we consider \((\mathbb{Z}_4, +)\) as an abelian group and we prove strong \(\mathbb{Z}_4\)-magic labeling for various graphs and generalize strong \(\mathbb{Z}_{4p}\)-magic labeling for those graphs. The graphs which admit strong \(\mathbb{Z}_{4p}\)-magic labeling are called as strong \(\mathbb{Z}_{4p}\)-magic graphs.

Bo Ning1
1Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xian, Shaanxi 710072, P.R. China
Abstract:

The well-known Mantel’s Theorem states that a graph on \(n\) vertices and \(m\) edges contains a triangle if \(m > \frac{n^2}{4}\). Nosal proved that every graph on \(m\) edges contains a triangle if the spectral radius \(\lambda_1 > \sqrt{m}\), which is a spectral analog of Mantel’s Theorem. Furthermore, by using Motzkin-Straus Inequality, Nikiforov sharpened Nosal’s result and characterized the extremal graphs when the equality holds. Our first contribution in this note is to give two new proofs of the spectral concise Mantel’s Theorem due to Nikiforov (without help of Motzkin-Straus Inequality). Nikiforov also obtained some results concerning the existence of consecutive cycles and spectral radius. Second, we prove a theorem concerning the existence of consecutive even cycles and spectral radius, which slightly improves a result of Nikiforov. At last, we focus on spectral radius inequalities. Hong proved his famous bound for spectral radius. Later, Hong, Shu, and Fang generalized Hong’s bound to connected graphs with given minimum degree. By using quite different techniques, Nikiforov proved Hong et al.’s bound for general graphs independently. In this note, we prove a new spectral inequality by applying the technique of Nikiforov. Our result extends Stanley’s spectral inequality.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;