Emrah Kilic1, Dursun Tasci2
1TOBB Economics AND TECHNOLOGY UNIVERSITY MATHEMATICS DEPARTMENT 06560 ANKARA TURKEY
2DEPARTMENT OF MATHEMATICS, Gazi UNIVERSITY 06500 ANKARA TURKEY
Abstract:

In this paper, we consider the relationships between the sums of the generalized order-\(k\) Fibonacci and Lucas numbers and \(1\)-factors of bipartite graphs.

Weiping Wang1, Tianming Wang1,2
1Department of Applied Mathematics, Dalian University of Technology Dalian 116024, P.R.China
2Department of Mathematics, Hainan Normal University Haikou 571158, P.R.China
Abstract:

The current paper deals with two special matrices \(T_n\) and \(W_n\) related to the Pascal, Vandermonde, and Stirling matrices. As a result, various properties of the entries of \(T_n\) and \(W_n\) are obtained, including the generating functions, recurrence relations, and explicit expressions. Some additional results are also presented.

Hao Li1, Mariusz Wozniak2
1L RI, UMR 8623, Bat. 490 Université de Paris-Sud 91405 Orsay, France
2Faculty of Applied Mathematics A G H Al. Mickiewicza 30 30-059 Krakéw, Poland
Abstract:

There are some results and many conjectures with the conclusion that a graph \(G\) contains all trees of given size \(k\). We prove some new results of this type.

Caihuan Zhang1,2, Zhizheng Zhang3,4
1 Department of Mathematics, Luoyang Teachers’ College, Luoyang 471022, P.R.China
2Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R. China
3Department of Mathematics, Luoyang Teachers’ College, Luoyang 471022, P.R.China
4College of Mathematics and Information Science, Henan University, Kaifeng 475001, P. R. China
Abstract:

In \([3]\), we gave a factorization of the generalized Lah matrix.In this short note, we show its another factorization. From this factorization, several interesting combinatorial identities involving the Fibonacci numbers are obtained.

Qingde Kang1, Chunping Ma2, Hongtao Zhao1
1Institute of Mathematics, Hebei Normal University, Shijiazhuang 050016, P. R. China
2Department of Applied Mathematics, North China Electric Power University, Baoding 071003, P. R. China
Abstract:

Let \(\lambda K_v\) be the complete multigraph with \(v\) vertices. Let \(G\) be a finite simple graph. A \(G\)-decomposition of \(K_v\), denoted by \(G-GD_\lambda(v)\), is a pair \((X, \mathcal{B})\) where \(X\) is the vertex set of \(K_v\) and \(\mathcal{B}\) is a collection of subgraphs of \(K_v\), called blocks, such that each block is isomorphic to \(G\) and any two distinct vertices in \(K_v\) are joined in exactly one block of \(\mathcal{B}\). In this paper, nine graphs \(G_i\) with six vertices and nine edges are discussed, and the existence of \(G_i-GD_\lambda(v)\) is given, \(1 \leq i \leq 9\).

Johannes H.Hattingh1, Andrew R.Plummer1
1Department of Mathematics and Statistics University Plaza Georgia State University Atlanta, Georgia 30303, USA
Abstract:

Let \(G = (V, E)\) be a graph. A set \(S \subseteq V\) is a restrained dominating set if every vertex not in \(S\) is adjacent to a vertex in \(S\) and to a vertex in \(V – S\). The restrained domination number of \(G\), denoted by \(\gamma_r(G)\), is the smallest cardinality of a restrained dominating set of \(G\). It is known that if \(T\) is a tree of order \(n\), then \(\gamma_r(T) \geq \left\lceil \frac{n+2}{3} \right\rceil\). In this note, we provide a simple constructive characterization of the extremal trees \(T\) of order \(n\) achieving this lower bound.

Changqing Xu1, Xiaojun Wang1, Yatao Du2
1Department of Applied Mathematics, Hebei University of Technology, Tianjin 300401, China
2Department of Mathematics, Shijiazhuang Mechanical Engineering College, Shijiazhuang 050003, China
Abstract:

Given non-negative integers \(r, s\), and \(t\), an \([r, s, t]\)-coloring of a graph \(G = (V(G), E(G))\) is a mapping \(c\) from \(V(G) \cup E(G)\) to the color set \(\{0, 1, \ldots, k-1\}\) such that \(|c(v_i) – c(v_j)| \geq r\) for every two adjacent vertices \(v_i, v_j\), \(|c(e_i) – c(e_j)| \geq s\) for every two adjacent edges \(e_i, e_j\), and \(|c(v_i) – c(e_i)| \geq t\) for all pairs of incident vertices and edges, respectively. The \([r, s, t]\)-chromatic number \(\chi_{r,s,t}(G)\) of \(G\) is defined to be the minimum \(k\) such that \(G\) admits an \([r, s, t]\)-coloring. We prove that \(\chi_{1,1,2}(K_5) = 7\) and \(\chi_{1,1,2}(K_6) = 8\).

Stephan Dominique Andres1
1Zentrum fiir angewandte Informatik Kéln Weyertal 80, 50931 Kéln, Germany
Abstract:

We determine a recursive formula for the number of rooted complete \(N\)-ary trees with \(n\) leaves, which generalizes the formula for the sequence of Wedderburn-Etherington numbers. The diagonal sequence of our new sequences equals the sequence of numbers of rooted trees with \(N + 1\) vertices.

Emrah Kilic1, Nese Omur2
1 TOBB UNIVERSITY OF ECONOMICS AND TECHNOLOGY MATHEMATICS DEPARTMENT 06560 ANKaRA TURKEY
2KocaEL! UNIVERSITY MATHEMATICS DEPARTMENT 41380 IzmIT TURKEY
Abstract:

In this paper, we determine the conics characterizing the generalized Fibonacci and Lucas sequences with indices in arithmetic progressions, generalizing work of Melham and McDaniel.

Wenwen Wang1, Ming Zhang2, Hongquan Yu2, Duanyin Shi 3
1 School of Sciences, China University of Mining and Technology, Xuzhou, 221008, P.R.China
2 Department of Applied Mathematics, Dalian University of Technology, Dalian, 116024, P.R.China
3Department of Applied Mathematics, Dalian University of Technology, Dalian, 116024, P.R.China
Abstract:

A graph \(G = (V, E)\) is a mod sum graph if there exists a positive integer \(z\) and a labeling, \(\lambda\), of the vertices of \(G\) with distinct elements from \(\{1, 2, \ldots, z-1\}\) such that \(uv \in E\) if and only if the sum, modulo \(z\), of the labels assigned to \(u\) and \(v\) is the label of a vertex of \(G\). The mod sum number \(\rho(G)\) of a connected graph \(G\) is the smallest nonnegative integer \(m\) such that \(G \cup mK_1\), the union of \(G\) and \(m\) isolated vertices, is a mod sum graph. In Section \(2\), we prove that \(F_n\) is not a mod sum graph and give the mod sum number of \(F_n\) (\(n \geq 6\) is even). In Section \(3\), we give the mod sum number of the symmetric complete graph.

Jia Huang1, Jun-Ming Xu1
1Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, China
Abstract:

In this paper, we consider the effect of edge contraction on the domination number and total domination number of a graph. We define the (total) domination contraction number of a graph as the minimum number of edges that must be contracted in order to decrease the (total) domination number. We show that both of these two numbers are at most three for any graph. In view of this result, we classify graphs by their (total) domination contraction numbers and characterize these classes of graphs.

G.R. Omidi1,2
1Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
2School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box:19395-5746, Tehran, Iran
Abstract:

In this paper, connected graphs with the largest Laplacian eigenvalue at most \(\frac{5+\sqrt{13}}{2}\) are characterized. Moreover, we prove that these graphs are determined by their Laplacian spectrum.

Wen-Chung Huang1, Yi-Hsin Shih2
1Department of Mathematics Soochow University Taipei, Taiwan, Republic of China.
2Kaohsiung Municipal Sanmin Senior High School Kaohsiung, Taiwan, Republic of China.
Abstract:

An extended directed triple system of order \(v\) with an idempotent element (EDTS(\(v, a\))) is a collection of triples of the type \([x, y, z]\), \([x, y, x]\) or \((x, x, x)\) chosen from a \(v\)-set, such that every ordered pair (not necessarily distinct) belongs to only one triple and there are \(a\) triples of the type \((x, x, x)\). If such a design with parameters \(v\) and \(a\) exists, then it will have \(b_{v,a}\) blocks, where \(b_{v,a} = (v^2 + 2a)/3\). A necessary and sufficient condition for the existence of EDTS(\(v, 0\)) and EDTS(\(v, 1\)) are \(v \equiv 0 \pmod{3}\) and \(v \not\equiv 0 \pmod{3}\), respectively. In this paper, we have constructed two EDTS(\(v, a\))’s such that the number of common triples is in the set \(\{0, 1, 2, \ldots, b_{v,a} – 2, b_{v,a}\}\), for \(a = 0, 1\).

Yan-bing Zhao1, Guo-dong Qian2, Yu-lin Zhong3
1Department of Basic Courses, Zhangjiakou Vocational College of Technology, Zhangjiakou, 075051, China
2 Department of Computer Science, Hebei North University, Zhangjiakou, 075051, China
3Department of Basic Courses, Hainan Software Profession Institute, Qionghai, 571000, China
Abstract:

As applications of the Anzahl theorems in finite orthogonal spaces, we study the critical problem of totally isotropic subspaces, and obtain the critical exponent.

G.C. Laus1,2, Y.H. Peng3,2
1Faculty of Computer Science & Mathematics Universiti Teknologi MARA (Segamat Campus) Johor, Malaysia
2Institute for Mathematical Research Universiti Putra Malaysia 43400 UPM Serdang, Malaysia
3Department of Mathematics, Universiti Putra Malaysia 43400 UPM Serdang, Malaysia
Abstract:

Let \(P(G,\lambda)\) be the chromatic polynomial of a graph \(G\). A graph \(G\) is chromatically unique if for any graph \(H\), \(P(H,\lambda) = P(G, \lambda)\) implies H is isomorphic to \(G\). In this paper, we study the chromaticity of Turén graphs with deleted edges that induce a matching or a star. As a by-product, we obtain new families of chromatically unique graphs.

Hong Hu1
1Department of Mathematics, Huaiyin Normal University, Huaian 223300, Jiangsu Province, P.R.China
Abstract:

Let \(\{w_n\}\) be a second-order recurrent sequence. Several identities about the sums of products of second-order recurrent sequences were obtained and the relationship between the second-order recurrent sequences and the recurrence coefficient revealed. Some identities about Lucas sequences, Lucas numbers, and Fibonacci numbers were also obtained.

Salah Al-Addasi1, Omar A. AbuGhneim2, Hasan Al-Ezeh2
1Department of Mathematics, Faculty of Science, Hashemite University, Zarqa 13115, Jordan
2Department of Mathematics, Faculty of Science, Jordan University, Amman 11942, Jordan
Abstract:

In this paper, we prove that for any positive integers \(k,n\) with \(k \geq 2\) , the graph \(P_k^n\) is a divisor graph if and only if \(n \leq 2k + 2\) , where \(P^k_n\) is the \(k\) th power of the path \(P_n\). For powers of cycles we show that \(C^k_n\) is a divisor graph when \(n \leq 2k + 2\), but is not a divisor graph when \(n \geq 2k + 2\),but is not a divisor graph when \(n\geq 2k+\lfloor \frac{k}{2}\rceil,\) where \(C^k_n\) is the \(k\)th power of the cycle \(C_n\). Moreover, for odd \(n\) with \(2k+2 < n < 2k + \lfloor\frac{k}{2}\rfloor + 3\), we show that the graph \(C^k_n\) is not a divisor graph.

Guihai Yu1, Lihua Feng1
1School of Mathematics Shandong Institute of Business and Technology 191 Binhaizhong Road, Yantai, Shandong, P.R. China, 264005.
Abstract:

The Wiener index of a graph \(G\) is defined as \(W(G) = \sum_{u,v \in V(G)} d_G(u,v),\) where \(d_G(u,v)\) is the distance between \(u\) and \(v\) in \(G\) and the sum goes over all pairs of vertices. In this paper, we investigate the Wiener index of unicyclic graphs with given girth and characterize the extremal graphs with the minimal and maximal Wiener index.

Jennie C.Hansen1, Jerzy Jaworski2
1Actuarial Mathematics and Statistics and the Maxwell Institute for Mathemat- ical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
2Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umul- towska 87, 61-614 Poznati, Poland.
Abstract:

In this paper, we consider a random mapping, \(\hat{T}_n\), of the finite set \(\{1,2,\ldots,n\}\) into itself for which the digraph representation \(\hat{G}_n\) is constructed by:\((1)\) selecting a random number, \(\hat{L}_n\), of cyclic vertices,\((2)\) constructing a uniform random forest of size \(n\) with the selected cyclic vertices as roots, and \((3)\) forming `cycles’ of trees by applying a random permutation to the selected cyclic vertices.We investigate \(\hat{k}_n\), the size of a `typical’ component of \(\hat{G}_n\), and, under the assumption that the random permutation on the cyclical vertices is uniform, we obtain the asymptotic distribution of \(k\), conditioned on \(\hat{L}_n = m(n)\). As an application of our results, we show in Section \(3\) that provided \(\hat{L}_n\) is of order much larger than \(\sqrt{n}\), then the joint distribution of the normalized order statistics of the component sizes of \(\hat{G}_n\) converges to the Poisson-Dirichlet \((1)\) distribution as \(n \to \infty\). Other applications and generalizations are also discussed in Section \(3\).

Yuuki Tanaka1, Yukio Shibata2
1Information Science Center, Kyushu Institute of Technology, 1-1, Sensui-cho, Tobata-ku, Kitakyushu, Fukuoka, 804-8550, Japan.
2Department of Computer Science, Graduate School of Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
Abstract:

De Bruijn digraphs and shuffle-exchange graphs are useful models for interconnection networks. They can be represented as group action graphs of the wrapped butterfly graph and the cube-connected cycles, respectively. The Kautz digraph has similar definitions and properties to de Bruijn digraphs. It is \(d\)-regular and strongly \(d\)-connected, thus it is a group action graph. In this paper, we use another representation of the Kautz digraph and settle the open problem posed by M.-C. Heydemann in \([6]\).

M.H. Dinitz1, J.M. Gold1, T.C. Sharkey1, L. Traldi1
1Department of Mathematics, Lafayette College Easton, Pennsylvania 18042
Abstract:

We discuss the use of \(K\)-terminal networks to represent arbitrary clutters. A given clutter has many different representations, and there does not seem to be any set of simple transformations that can be used to transform one representation of a clutter into any other. We observe that for \(t \geq 2\) the class of clutters that can be represented using no more than \(t\) terminals is closed under minors, and has infinitely many forbidden minors.

Shi-Mei Ma1
1Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P.R. China
Abstract:

Brenti (J. Combin. Theory Ser. A \(91 (2000))\) considered a \(q\)-analogue of the Eulerian polynomials by enumerating permutations in the symmetric group \(S_n\) with respect to the numbers of excedances and cycles. Here we establish a connection between these \(q\)-Eulerian polynomials and some infinite generating functions.

Chunhui Lai1, Lili Hu1
1Department of Mathematics, Zhangzhou Teachers College, Zhangzhou, Fujian 363000, P. R. of CHINA.
Abstract:

Let \(K_k, C_k, T_k\), and \(P_k\) denote a complete graph on \(k\) vertices, a cycle on \(k\) vertices, a tree on \(k+1\) vertices, and a path on \(k+1\) vertices, respectively. Let \(K_m-H\) be the graph obtained from \(K_m\) by removing the edges set \(E(H)\) of the graph \(H\) (\(H\) is a subgraph of \(K_m\)). A sequence \(S\) is potentially \(K_m-H\)-graphical if it has a realization containing a \(K_m-H\) as a subgraph. Let \(\sigma(K_m-H,n)\) denote the smallest degree sum such that every \(n\)-term graphical sequence \(S\) with \(\sigma(S) \geq \sigma(K_m-H,n)\) is potentially \(K_m-H\)-graphical. In this paper, we determine the values of \(\sigma(K_{r+1}-H,n)\) for \(n \geq 4r+10, r \geq 3, r+1 \geq k \geq 4\) where \(H\) is a graph on \(k\) vertices which contains a tree on \(4\) vertices but not contains a cycle on \(3\) vertices. We also determine the values of \(\sigma(K_{r+1}-P_{2},n)\) for \(n \geq 4r+8, r \geq 3\).

S.M. Anvariyeh1, S. Mirvakili2, B. Davvaz1
1Department of Mathematics, Yazd University, Yazd, Iran
2Department of Mathematics, Payame Noor University, Yazd, Iran
Abstract:

In this paper, the class of \((m,n)\)-ary hypermodules is introduced and several properties and examples are found. \((m,n)\)-ary hypermodules are a generalization of hypermodules. On the other hand, we can consider \((m,n)\)-ary hypermodules as a good generalization of \((m,n)\)-ary modules. We define the fundamental relation \(\epsilon^*\) on the \((m,n)\)-ary hypermodules \(M\) as the smallest equivalence relation such that \(M/\epsilon^*\) is an \((m,n)\)-ary module, and then some related properties are investigated.

Zehui Shao1, Xiaodong Xu2, Qiquan Bao3
1School of Information Science & Technology, Chengdu University, Chengdu, 610106, China
2Guangxi Academy of Sciences, Nanning, Guangxi 530007,China
3Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract:

For given graphs \(G_1\) and \(G_2\), the Ramsey number \(R(G_1, G_2)\) is defined to be the least positive integer \(n\) such that every graph \(G\) on \(n\) vertices, either \(G\) contains a copy of \(G_1\) or the complement of \(G\) contains a copy of \(G_2\). In this note, we show that \(R(C_m, B_n) = 2m-1\) for \(m \geq 2n-1 \geq 7\). With the help of computers, we obtain the exact values of \(14\) small cycle-book Ramsey numbers.

Song Guo1
1School of Mathematical Science, Huaiyin Normal University Huaian 223300, People’s Republic of China
Abstract:

For positive integers \(c \geq 0\) and \(k \geq 1\), let \(n = R(c, k)\) be the least integer, provided it exists, such that every \(2\)-coloring of the set \([1,n] = \{1,\ldots,n\}\) admits a monochromatic solution to the equation \(x + y+c = 4z\) with \(x, y, z \in [1,n]\). In this paper, the precise value of \(R(c, 4)\) is shown to be \(\left\lceil{3c + 2}/{8}\right\rceil\) for all even \(c \geq 34\).

Nihal Yilmaz Ozgur1
1BatikeEsin UNIVERSITY, DEPARTMENT OF MATHEMATICS, 10145 BALIKESIR, TURKEY
Abstract:

Given a positive integer \(n\) such that \(-1\) is a quadratic residue mod \(n\), we give an algorithm that computes the integers \(u\) and \(v\) which satisfy the equation \(n = u^2 + v^2\). To do this, we use the group structure of the Modular group \(\Gamma= \text{PSL}(2,\mathbb{Z})\).

Min-Jen Jou1
1Department of Insurance Ling Tung University Taichung, Taiwan 40852, R.O.C.
Abstract:

For a graph \(G = (V(G),E(G))\), a set \(S \subseteq V(G)\) is called a dominating set if \(N_G[S] = V(G)\). A dominating set \(S\) is said to be minimal if no proper subset \(S’ \subset S\) is a dominating set. Let \(\gamma(G)\) (called the domination number) and \(\Gamma(G)\) (called the upper domination number) be the minimum cardinality and the maximum cardinality of a minimal dominating set of \(G\), respectively. For a tree \(T\) of order \(n \geq 2\), it is obvious that \(1 = \gamma(K_{1,n-1}) \leq \gamma(T) \leq \Gamma(T) \leq \Gamma(K_{1,n-1}) = n-1\). Let \(t(n) = \min_{|T|=n}(\Gamma(T)-\gamma(T))\). In this paper, we determine \(t(n)\) for all natural numbers \(n\). We also characterize trees \(T\) with \(\Gamma(T) – \gamma(T) = t(n)\).

Shi-Mei Ma1
1Department of Information and Computing Science, Northeastern University at Qinhuangdao, Hebei 066004, China
Abstract:

The signless \(r\)-associated Stirling numbers of the first kind \(d_r(n, k)\) counts the number of permutations of the set \(\{1,2,\ldots,n\}\) that have exactly \(k\) cycles, each of which is of length greater than or equal to \(r\), where \(r\)is a fixed positive integer. F. Brenti obtained that the generating polynomials of the numbers \(d_r(n, k)\) have only real zeros. Here we consider the location of zeros of these polynomials.

Chin-Mei Fu1, Wen-Chung Huang2
1Department of Mathematics Tamkang University, Tamsui, Taipei Shien, Taiwan, Republic of China
2Department of Mathematics Soochow University Taipei, Taiwan, Republic of China
Abstract:

A kite-design of order \(n\) is a decomposition of the complete graph \(K_n\) into kites. Such systems exist precisely when \(n \equiv 0,1 \pmod{8}\). Two kite systems \((X,\mathcal{K}_1)\) and \((X,\mathcal{K}_2)\) are said to intersect in \(m\) pairwise disjoint blocks if \(|\mathcal{K}_1 \cap \mathcal{K}_2| = m\) and all blocks in \(\mathcal{K}_1 \cap \mathcal{K}_2\) are pairwise disjoint. In this paper, we determine all the possible values of \(m\) such that there are two kite-designs of order \(n\) intersecting in \(m\) pairwise disjoint blocks, for all \(n \equiv 0,1 \pmod{8}\).

Lihua Feng1, Guihai Yu1
1School of Mathematics, Shandong Institute of Business and Technology 191 Binhaizhong Road, Yantai, Shandong, P.R. China, 264005.
Abstract:

In this note, we present some upper bounds for the \(k\)th largest eigenvalue of the adjacency matrix as well as the Laplacian matrix of graphs. Special attention is paid to the Laplacian matrix of trees.

A.M. Khalaf1, Y.H. Peng1
1Department of Mathematics, Faculty of Science Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Abstract:

Let \(P(G, \lambda)\) denote the chromatic polynomial of a graph \(G\). Two graphs \(G\) and \(H\) are chromatically equivalent, written \(G \sim H\), if \(P(G, \lambda) = P(H, \lambda)\). A graph \(G\) is chromatically unique, written \(x\)-unique, if for any graph \(H\), \(G \sim H\) implies that \(G\) is isomorphic with \(H\). In this paper, we prove that the graph \(\theta(a_1, a_2, \ldots, a_6)\) is \(x\)-unique for exactly two distinct values of \(a_1, a_2, \ldots, a_6\).

Liangxia Wan1, Yanpei Liu1
1Department of Mathematics Beijing Jiaotong University, Beijing 100044, P.R.China
Abstract:

In this paper, we give an explicit expression of the genus distributions of \(M_j^n\), for \(j = 1, 2, \ldots, 11\), which are introduced in the previous paper “Orientable embedding distributions by genus for certain types of non-planar graphs”. For a connected graph \(G = (V, E)\) with a cycle, let \(e\) be an edge on a cycle. By adding \(2n\) vertices \(u_1, u_2,u_3 \ldots, u_n, v_1, v_2,v_3 \ldots, v_n\) on \(e\) in sequence and connecting \(u_k, v_k\) for \(1 \leq k \leq n\), a non-planar graph \(G_n\) is obtained for \(n \geq 3\). Thus, the orientable embedding distribution of \(G_n\) by genus is obtained via the genus distributions of \(M_j^n\).

Hong-Jian Lai1,2, Mingchu Li3, Yehong Shao4, Liming Xiong5
1Department of Mathematics, West Virginia University Morgantown, WV 26506, U.S.A.
2College of Science, Chongqing Technology and Business University Chongaing, 400067, P. R. China
3 School of Software, Dalian University of Technology Dalian, 116024, P.R. China
4Arts and Sciences, Ohio University Southern Ironton, OH 45638, U.S.A
5Department of Mathematics, Beijing Institute of Technology Beijing, 100081, P.R. China
Abstract:

A graph \(G\) is \(N^m\)-locally connected if for every vertex \(v\) in \(G\), the vertices not equal to \(v\) and with distance at most \(m\) to \(v\) induce a connected subgraph in \(G\). In this note, we first present a counterexample to the conjecture that every \(3\)-connected, \(N^2\)-locally connected claw-free graph is hamiltonian and then show that both connected \(N^2\)-locally connected claw-free graph and connected \(N^3\)-locally connected claw-free graph with minimum degree at least three have connected even \([2, 4]\)-factors.

Koen Thas1
1Ghent University Department of Pure Mathematics and Computer Algebra Krijgslaan 281, $22, B-9000 Ghent, Belgium
Abstract:

In J.-P. Serre’s \(Lettre \;à\; M. Tsfasman\) \([3]\), an interesting bound for the maximal number of points on a hypersurface of the \(n\)-dimensional projective space \(PG(n,q)\) over the Galois field \(GF(q)\) with \(q\) elements is given. Using essentially the same combinatorial technique as in \([3]\), we provide a bound which is relative to the maximal dimension of a subspace of \(PG(n,q)\) which is completely contained in the hypersurface. The lower that dimension, the better the bound. Next, by using a different argument, we derive a bound which is again relative to the maximal dimension of a subspace of \(PG(n, q)\) which is completely contained in the hypersurface, If that dimension increases for the latter case, the bound gets better.
As such, the bounds are complementary.

Gao Zhenbin1
1 School of Science, Harbin Engineering University, Harbin 150001, Heilongjiang Province, P.R. China
Abstract:

In this paper, it is shown that a variation of banana trees is odd graceful, and it is also proved that the variation of banana is graceful and \(\hat{p}\)-labeling in some cases.

E. Kilic1, D. Tasci2
1TOBB Economics AND TECHNOLOGY University 06560 ANKARA TURKEY
2Gazi UNIVERSITY, MATHEMATICS DEPARTMENT, 06500 ANKARA TURKEY
Abstract:

In this paper, we consider the generalized Fibonacci and Pell Sequences and then show the relationships between the generalized Fibonacci and Pell sequences, and the Hessenberg permanents and determinants.

Yu-Shuang Li1, Jun Wang2
1School of Science, Yanshan University, Qinhuangdao 066004, P. R. China
2Department of Mathematics, Shanghai Normal University, Shanghai 200234, P.R. China
Abstract:

In this paper, a sequence representation of Dyck paths is presented, which yields a sequence representation of the Dyck path poset \({D}\) ordered by pattern containment. This representation makes it clear that the Dyck path poset \({D}\) takes the composition poset investigated by Sagan and Vatter as a subposet, and that the pattern containment order on Dyck paths exactly agrees with a generalized subword order also presented by Sagan and Vatter. As applications of the representation, we describe the Möbius function of \({D}\) and establish the Möbius inverse of the rank function of \({D}\) in terms of Dyck sequences. In the end, a Sperner and unimodal subposet of \({D}\) is given.

G.R. Omidi1,2, K. Tajbakhsh3
1Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
2School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box:19395-5746, Tehran, Iran
3Department of Mathematics, Chungnam National University, Daejeon, Korea
Abstract:

A graph is said to be determined by its adjacency spectrum (or to be a DS graph, for short) if there is no other non-isomorphic graph with the same adjacency spectrum. Although all connected graphs of index less than \(2\) are known to be determined by their adjacency spectra, the classification of DS graphs of index less than \(2\) is not complete yet. The purpose of this paper is to characterize all DS graphs of index less than \(2\) with no \(Z_n\) as a component.

Guoping Wang1,2, Qiongxiang Huang 3
1Department of Mathematics, Xinjiang Normal University, Urumgi, Xinjiang 830000, P.R.China
2Department of Mathematics, Jiangsu Teachers University of Technology, Changzhou, Jiangsu 213001, P.R.China
3The College of Mathematics and Systems Sciences, Xinjiang University, Urumqi, Xinjiang 830046, P.R.China
Abstract:

Let \(B\) be a bipartite graph. We obtain two new results as follows:(1) Suppose that \(u \in V(B)\) is a vertex such that \(N_B(u)\) contains at least \(|N_B(u)| – 1\) odd vertices. Let \(f : V(B) \to \mathbb{N}\) be the function such that \(f(u) = 1\) and \(f(v) = \lceil d_B(v)/2 \rceil + 1\) for \(v \in V(B) \setminus u\). Then \(B\) is \(f\)-choosable.(2) Suppose that \(u \in V(B)\) is a vertex such that every vertex in \(N_B(u)\) is odd, and \(v \in V(B)\) is an odd vertex that is not adjacent to \(u\). Let \(f : V(B) \to \mathbb{N}\) be the function such that \(f(u) = 1\), \(f(v) = \lceil d_B(v)/2 \rceil\), and \(f(w) = \lceil d_B(w)/2 \rceil + 1\) for \(w \in V(B) \setminus \{u, v\}\). Then \(B\) is \(f\)-choosable.

liro Honkala1, Tero Laihonen1
1Department of Mathematics, University of Turku, 20014 Turku, Finland
Abstract:

Assume that \(G = (V, E)\) is an undirected and connected graph, and consider \(C \subseteq V\). For every \(v \in V\), let \(I_r(v) = \{u \in C: d(u,v) \leq r\}\), where \(d(u,v)\) denotes the number of edges on any shortest path between \(u\) to \(v\) in \(G\). If all the sets \(I_r(v)\) for \(v \in V\) are pairwise different, and none of them is the empty set, \(C\) is called an \(r\)-identifying code. In this paper, we consider \(t\)-vertex-robust \(r\)-identifying codes of level \(s\), that is, \(r\)-identifying codes such that they cover every vertex at least \(s\) times and the code is vertex-robust in the sense that \(|I_r(u) \Delta I_r(v)| \geq 2t+1\) for any two different vertices \(u\) and \(v\). Vertex-robust identifying codes of different levels are examined, in particular, of level \(3\). We give bounds (sometimes exact values) on the density or cardinality of the codes in binary hypercubes and in some infinite grids.

Marcia R.Cerioli1, Fabiano de S.Oliveira2, Jayme L.Szwarcfiter3
1Universidade Federal do Rio de Janeiro – Instituto de Matematica and COPPE, Caixa Postal 68530, 21945-970, Rio de Janeiro, RJ, Brasil.
2Universidade Federal do Rio de Janeiro – COPPE, Brasil.
3Universidade Federal do Rio de Janeiro – Instituto de Matematica, NCE, and COPPE, Brasil.
Abstract:

A clique \(C\) is an extreme clique of an interval graph \(G\) if there exists some interval model of \(G\) in which \(C\) is the first clique. A graph \(G\) is homogeneously clique-representable if all cliques of \(G\) are extreme cliques. In this paper, we present characterizations of extreme cliques and homogeneously clique-representable graphs.

Tao Feng1
1School of Mathematical Sciences, Peking University, Beijing 100871,China
Abstract:

In this note, we show that there is no \((945, 177, 33)\)-difference set in any group \(G\) of order \(945\) with a normal subgroup \(K\) such that \(G/K \cong \mathbb{C}_{27} \times \mathbb{C}_5\), and hence no cyclic difference set with such parameters exists. This fills one entry of Baumert and Gordon’s table with “No”.

Bruce E.Sagan1
1Department of Mathematics Michigan State University East Lansing, MI 48824-1027 USA
Abstract:

The study of patterns in permutations is a very active area of current research. Klazar defined and studied an analogous notion of pattern for set partitions. We continue this work, finding exact formulas for the number of set partitions which avoid certain specific patterns. In particular, we enumerate and characterize those partitions avoiding any partition of a 3-element set. This allows us to conclude that the corresponding sequences are P-recursive. Finally, we define a second notion of pattern in a set partition, based on its restricted growth function. Related results are obtained for this new definition.

Wai Chee Shiu1, Xue-gang Chen2, Wai Hong Chan1
1Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China.
2Department of Mathematics, North China Electric Power University, Beijing 102206, P.R. China.
Abstract:

Let \(G = (V(G), E(G))\) be a graph with \(\delta(G) \geq 1\). A set \(D \subseteq V(G)\) is a paired-dominating set if \(D\) is a dominating set and the induced subgraph \(G[D]\) contains a perfect matching. The paired domination number of \(G\), denoted by \(\gamma_p(G)\), is the minimum cardinality of a paired-dominating set of \(G\). The paired bondage number, denoted by \(b_p(G)\), is the minimum cardinality among all sets of edges \(E’ \subseteq E\) such that \(\delta(G – E’) \geq 1\) and \(\gamma_p(G – E’) > \gamma_p(G)\). For any \(b_p(G)\) edges \(E’ \subseteq E\) with \(\delta(G – E’) \geq 1\), if \(\gamma_p(G – E’) > \gamma_p(G)\), then \(G\) is called uniformly pair-bonded graph. In this paper, we prove that there exists uniformly pair-bonded tree \(T\) with \(b_p(T) = k\) for any positive integer \(k\). Furthermore, we give a constructive characterization of uniformly pair-bonded trees.

A. Aguglia1
1Dipartimento di Matematica Politecnico di Bari Via G. Amendola 126/B 70126 Bari (Italy)
Abstract:

A new construction of a B-T unital using Hermitian curves and certain hypersurfaces of \(\text{PG}(3,q^2)\) is presented. Some properties of an algebraic curve containing all points of a B-T unital are also examined.

Kishore Sinha1, Neelam Sinha2
1Department of Statistics Birsa Agricultural University Ranchi – 834006 India
2Department of Mathematics Indian Institute of Technology Bombay Mumbai, India
Abstract:

A construction of optimal quaternary codes from symmetrical Balanced Incomplete Block (BIB) design \((4t – 1, 2t – 1, t – 1)\) is described.

Zehui Shao1,2, Jin Xu2, Lingiang Pan2
1School of Information Science & Technology, Chengdu University, Chengdu, 610106, China
2Department of Control Science and Engineering Huazhong University of Science and Technology Wuhan 430074, China
Abstract:

For integers \(s,t \geq 1\), the Ramsey number \(R(s, t)\) is defined to be the least positive integer \(n\) such that every graph on \(n\) vertices contains either a clique of order \(s\) or an independent set of order \(t\). In this note, we derive new lower bounds for the Ramsey numbers: \(R(6,8) \geq 129\), \(R(7,9) \geq 235\) and \(R(8,17) \geq 937\). The new bounds are obtained with a constructive method proposed by Xu and Xie et al. and the help of computer algorithm.

Jonathan L.Gross1, Imran F.Khan1, Mehvish I.Poshni1
1Department of Computer Science Columbia University, New York, NY 10027
Abstract:

We pursue the problem of counting the imbeddings of a graph in each of the orientable surfaces. We demonstrate how to achieve this for an iterated amalgamation of arbitrarily many copies of any graph whose genus distribution is known and further analyzed into a partitioned genus distribution. We introduce the concept of recombinant strands of face-boundary walks, and we develop the use of multiple production rules for deriving simultaneous recurrences. These two ideas are central to a broad-based approach to calculating genus distributions for graphs synthesized from smaller graphs.

Jun-Ming Xu1, Jian-Wei Wang1, Wei-Wei Wang1
1Department of Mathematics University of Science and Technology of China Hefei, Anhui, 230026, China
Abstract:

The super (resp., edge-) connectivity of a connected graph is the minimum cardinality of a vertex-cut (resp., an edge-cut) whose removal does not isolate a vertex. In this paper, we consider the two parameters for a special class of graphs \(G(G_p,G_1; M)\), proposed by Chen et al [Applied Math. and Computation, \(140 (2003), 245-254]\), obtained from two \(k\)-regular \(k\)-connected graphs \(G_p\) and \(G_1\), with the same order by adding a perfect matching between their vertices. Our results improve ones of Chen et al. As applications, the super connectivity and the super edge-connectivity of the \(n\)-dimensional hypercube, twisted cube, cross cube, Möbius cube and locally twisted cube are all \(2n – 2\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;