Henk Meijer1, David Rappaport1
1 Department of Computing and Information Science Queen’s University Kingston, Ontario K7L 3N6
W. Neidhardt1
1 Fakultat fiir Mathematik und Physik Universitat Bayreuth Postfach 101251 D-8580 Bayreuth ER. GERMANY
Abstract:

The point set “oval” has been considered in Steiner triple systems \((STS)\) and Steiner quadruple systems \((SQS)\) [3],[2]. There are many papers about “subsystems” in \(STS\) and \(SQS\). Generalizing and modifying the terms “oval” and “subsystem” we define the special point sets “near-oval” and “near-system” in Steiner quadruple systems. Considering some properties of these special point sets we specify how to construct \(SQS\) with near-ovals (\(S^{no}\)) and with near-systems (\(S^{ns}\)), respectively. For the same order of the starting system we obtain non-isomorphic systems \(S^{no}\) and \(S^{ns}\).

Paul A. Catlin1, Hong-Jian Lai2
1Department of Mathematics, Wayne State University, Detroit MI 48202
2Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ont. CANADA N2L 3G1i
Abstract:

P. Paulraja recently showed that if every edge of a graph \(G\) lies in a cycle of length at most \(5\) and if \(G\) has no induced \(K_{i,s}\) as a subgraph, then \(G\) has a spanning closed trail. We use a weaker hypothesis to obtain a stronger conclusion. We also give a related sufficient condition for the existence of a closed trail in \(G\) that contains at least one end of each edge of \(G\).

E. J. Cockayne1, P. J. Lorimer2, C. M. Mynhardt 3
1 University of Victoria, B.C., Canada
2 University of Auckland, New Zealand
3University of South Africa
Abstract:

Let \(G\) be a \(p\)-vertex graph which is rooted at \(x\). Informally, the rotation number \(h(G, x)\) is the smallest number of edges in a \(p\)-vertex graph \(F\) such that, for every vertex \(y\) of \(F\), there is a copy of \(G\) in \(F\) with \(x\) at \(y\). In this article, we consider rotation numbers for the generalized star graph consisting of \(k\) paths of length \(n\), all of which have a common endvertex, rooted at a vertex adjacent to the centre. In particular, if \(k = 3\) we determine the rotation numbers to within \(1, 2\) or \(3\) depending on the residue of \(n\) modulo \(6\).

Alberto Cavicchioli 1
1Dipartimento di Matematica Pura ed Applicata Via Campi 213/B 41100 Modena ITALIA
Abstract:

The paper deals with combinatorial structures (pseudo-complexes, crystallizations) giving a direct link between the topology of triangulated manifolds and the theory of edge-coloured multigraphs. We define the concept of regular crystallization of a manifold and prove that every non-trivial handle-free closed \(n\)-manifold has a regular crystallization. Then we study some applications of regular crystallizations and give a counter-example to a conjecture of Y. Tsukui [20] about strong frames of the \(3\)-sphere.

Albert L. Whiteman1
1Department of Mathematics University of Southern California Los Angeles, CA 90089 U.S.A.
Abstract:

A construction is given of a family of D-optimal designs of order \(n = 2v \equiv 2 \pmod{4}\), where \(v = 2q^2 + 2q + 1\) and \(q\) is an odd prime power. For \(q > 3\), all the orders of D-optimal designs produced by this construction are new.

Ebadollah S. Mahmoodian 1,2
1 Department of Mathematical Sciences Sharif University of Technology
2 Research Center of Atomic Energy Organization of Iran Tehran, Islamic Republic of Iran
Abstract:

The set of all distinct blocks of an \(t\)-(v,k) design is referred to as the support of the design, and its cardinality is denoted by \(b^*\). By generalizing a method on BIB designs called “trade off” to \(3\)-designs, a table for \(3\)-(9,4) designs with each \(60 \leq b^* \leq 126 = {\binom{9}{4}}\) is constructed. Also, we have produced over 2500 non-isomorphic \(3\)-(9,4) designs with \(\lambda = 6\). By utilizing this generalized trade off method along with two other methods, a table for \(3\)-(10,4) designs with 156 different \(b^*\)’s is constructed. By a recursive lower bound on the minimum value of \(b^*\) in all \(t\)-(v,k) designs, it is shown that \(b^*_{min}[3-(9,4)] \geq 36,\) and \(b^*_{min}[3\)-(10,4)] = 30.

Geoffrey Exoo1
1Department of Mathematics and Computer Science Indiana State University Terre Haute, IN 47809
Abstract:

A hypergraph has property \(\mathcal{B}\) (or chromatic number two) if there is a set which intersects each of its edges, but contains none of its edges. The number of edges in a smallest \(n\)-graph which does not have property \(\mathcal{B}\) is denoted \(m(n)\). This function has proved difficult to evaluate for \(n > 3\). As a consequence, several refinements and variations of the function \(m\) have been studied. In this paper, we describe an effort to construct, via computer, hypergraphs that improve current estimates of such functions.

Brendan D. McKay1, Gordon F. Royle2
1 Computer Science Department Australian National University GPO Box 4, ACT 2601, Australia
2 Mathematics Department University of Western Australia Nedlands, Wa 6009, Australia
Abstract:

We complete the construction of all the simple graphs with at most \(26\) vertices and transitive automorphism group. The transitive graphs with up to \(19\) vertices were earlier constructed by McKay , and the transitive graphs with \(24\) vertices by Praeger and Royle . Although most of the construction was done by computer, a substantial preparation was necessary. Some of this theory may be of independent interest.

Jason I. Brown1, Derek G. Corneil 2
1 Department of Mathematics York University, Toronto
2Department of Computer Science University of Toronto Toronto, CANADA
Abstract:

Given a graph \(G\) and nonnegative integer \(k\), a map \(\pi: V(G) \to \{1, \ldots, k\}\) is a perfect \(k\)-colouring if the subgraph induced by each colour class is perfect. The perfect chromatic number of \(G\) is the least \(k\) for which \(G\) has a perfect \(k\)-colouring; such an invariant is a measure of a graph’s imperfection. We study here the theory of perfect colourings. In particular, the existence of perfect \(k\)-chromatic graphs are shown for all \(k\), and we draw attention to the associated extremal problem. We provide extensions to C. Berge’s Strong Perfect Graph Conjecture, and prove the existence of graphs with only one perfect \(k\)-colouring (up to a permutation of colours). The type of approach taken here can be applied to studying any graph property closed under induced subgraphs.

Paul Vieira Caetano1, Katherine Heinrich 2
1 University of Waterloo Waterloo Ontario N2L 3G1 Canada
2Simon Fraser University Burnaby BC VSA 186 Canada
Abstract:

An \(S_{s,t}\) distar-factorization of \(DK_{m}\) is an edge partitioning of the complete symmetric directed graph \(DK_{m}\) into subdigraphs each of which is isomorphic to the distar \(S_{s,t}\) (the distar \(S_{s,t}\) being obtained from the star \(K_{1,s+t}\) by directing \(s\) of the edges into the centre and \(t\) of the edges out of the centre). We consider the question, “When can the arcs of \(DK_{m}\) be partitioned into arc-disjoint subgraphs each isomorphic to \(S_{s,t}\)?” and give necessary and sufficient conditions for \(S_{s,t}\) distar-factorizations of \(DK_{m}\) in the cases when either \(m\equiv 0\) or \(1 \pmod{s+t}\).

E. Csaki1, S. G. Mohanty2, Jagdish Saran3
1Hungarian Academy of Sciences Budapest, HUNGARY
2 McMaster University Hamilton, Ontario CANADA
3 University of Delhi Delhi, INDIA
Abstract:

Consider a random walk in a plane in which a particle at any stage moves one unit in any one of the four directions, namely, north, south, east, west with equal probability. The problem of finding the distribution of any characteristic of the above random walk when the particle reaches a fixed point \((a, b)\) after \(d\) steps reduces to the counting of lattice paths in a plane in which the path can move one unit in any of the four directions. In this paper, path counting results related to the boundaries \(y-x = k_1\) and \(y+x = k_2\) such as touchings, crossings, etc., are obtained by using either combinatorial or probabilistic methods. Some extensions to higher dimensions are indicated.

William McCuaig1
1Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario, N2L 3G1 CANADA
Abstract:

For \(v \geq 4\) we determine the largest number \(f(v)\), such that every simple \(3\)-connected graph on \(v\) vertices has \(f(v)\) edge contractions which result in a smaller \(3\)-connected graph. We also characterize those simple \(3\)-connected graphs on \(v\) vertices which have exactly \(f(v)\) such edge contractions.

Olof Heden 1
1Department of Mathematics Royal Institute of Technology Stockholm, Sweden
B. Piazza1, R. Ringeisen2, S. Stueckle3
1University of Southem Mississippi
2 Clemson University
3University of Idaho
Abstract:

Several measures of the vulnerability of a graph have been examined previously. These include connectivity, toughness, binding number, and integrity. In this paper the authors examine the toughness and binding number of cycle permutation graphs (sometimes called generalized prisms). In particular, we determine the binding number for any cycle permutation graph and find upper and lower bounds for the toughness of such graphs. A class of cycle permutation graphs where the lower bound is always achieved and a class of cycle permutation graphs (which are also generalized Petersen graphs) where the lower bound is never achieved are also presented.

Howard B. Frost1, Michael S. Jacobson2, Jerald A. Kabell3, F.R. MeMorris2
1 Department of Mathematics University of Arizona Tucson, AZ 85721
2 Department of Mathematics University of Louisville Louisville, KY 40292
3Department of Computer Science Central Michigan University Mt. Pleasant, MI 48859
Abstract:

Following up on the bipartite analogue of an interval graph developed in a previous work, we investigate several possibilities for a bipartite analogue of the concept of a split graph. We also give bipartite analogues of threshold graphs and of perfect graphs.

Stéphane Foldes 1
1 GERAD H.E.C. — Ecole Polytechnique — McGill University 5255, avenue Decelles Montréal (Québec) H3T 1V6 CANADA
Abstract:

The problem of recognizing if a configuration theorem is valid in a given class \(\mathcal{C}\) of incidence structures is equivalent to the problem of deciding, for an arbitrary finite incidence structure \(I\), whether \(I\) is embeddable in some incidence structure in \(\mathcal{C}\).

Xiang-dong Hou1
1 University of Illinois at Chicago Chicago, Illinois 60680 U.S.A.
Abstract:

In a \(\lambda\)-design \(D\), the points \(1, 2, \ldots, n\) are divided into two classes with replications \(r_1\) and \(r_2\), respectively. For any \(1 \leq i, j \leq n\), let \(r_{ij}\) be the number of the blocks containing \(i\) and \(j\). It is proven that \(D\) is type-1 if and only if for any \(i, j\) (\(i \neq j\)) in the same class, \(r_{ij}\) depends only on the class.

Jason I. Brown1, Vojtéch Rédl2
1Department of Mathematics York University, Toronto CANADA
2Department of Mathematics and Computer Science Emory University, Atlanta, Georgia U.S.A
Abstract:

Given a graph \(G\) and a positive integer \(k\), a graph \(H\) is a \(k\)-Folkman graph for \(G\) if for any map \(\pi: V(H) \to \{1, \ldots, k\}\), there is an induced subgraph of \(H\) isomorphic to \(G\) on which \(\pi\) is constant. J. Folkman ({SIAM J. Appl. Math.} 18 (1970), pp. 19-24) first showed the existence of such graphs. We provide here a new construction of \(k\)-Folkman graphs for bipartite graphs \(G\) via random hypergraphs. In particular, we show that for any fixed positive integer \(k\), any fixed positive real number \(\epsilon\) and any bipartite graph \(G\), there is a \(k\)-Folkman graph for \(G\) of order \(O(|V(G)|^{3+\epsilon})\) without triangles.

Charles F. Laywine 1, Gary L. Mullen2
1Department of Mathematics Brock University St. Catharines, Ontario L2S 3A1 CANADA
2 Department of Mathematics The Pennsylvania State University University Park, 8A 16802 U.S.A.
Yeow Meng Chee 1, Charles J. Colbourn2, Donald L. Kreher3
1Department of Computer Science University of Waterloo Waterloo, Ontario N2L 3G) CANADA
2Department of Combinatorics and Optimization University of Waterloo Waterloo, Ontario N2L 3G1 CANADA
3 Department of Mathematics University of Wyoming Laramie, Wyoming 82071 U.S.A.
H. Kharaghani 1
1 Department of Mathematics University of Alberta Edmonton, Alberta, Canada
Abstract:

An extension of a method of Hammer, Sarvate and Seberry is given. As a result, from an \( {OD}(s_1,s_2,…s_r)\) of order \(n\) and a \( w(nm, p)\) an \( {OD}(ps_1,ps_2…ps_r)\) of order \(nm(n+k)\) for each integer \(k \geq 0\) is constructed.

D.G. Sarvate 1, J-C. Renaud1
1Department of Mathematics University of Papua New Guinea P.O. Box 320, P.N.G.
Abstract:

It has been conjectured that for any union-closed set \(A\) there exists some element which is contained in at least half the sets in \(A\).
This has recently been shown that this conjecture hold if the smallest set in \(A\) has size one or two, and also to hold if the number of sets in \(A\) is less than eleven.It is shown that the smallest set size approach is unproductive for size three. It is also shown that the conjecture holds for other conditions on the sets in \(A\), and an improved bound is derived: the conjecture holds if the number of sets in \(A\) is less than 19.

Y. S. Ho1, S. C. Shee 1, S. M. Lee 2
1Department of Mathematics National University of Singapore Singapore
2 Department of Mathematics and Computer Science San Jose State University San Jose, CA 95192
Abstract:

Let \(G\) be a graph. A labelling \(f: V(G) \to \{0,1\}\) is called a binary labelling of \(G\). A binary labelling \(f\) of \(G\) induces an edge labelling \(\lambda\) of \(G\) as follows:
\[\lambda(u,v) = |f(u) – f(v)|\] \quad for every edge \(uv \in E(G)\).
Let \(v_f(0)\) and \(v_f(1)\) be the number of vertices of \(G\) labelled with \(0\) and \(1\) under \(f\), and \(e_0(0)\) and \(e_1(1)\) be the number of edges labelled with \(0\) and \(1\) under \(\lambda\), respectively. Then the binary labelling \(f\) of \(G\) is said to be cordial if
\[|v_f(0) – v_f(1)| \leq 1 \quad {and} \quad |e_f(0) – e_f(1)| \leq 1.\]

A graph \(G\) is cordial if it admits a cordial labelling.

In this paper, we shall give a sufficient condition for the Cartesian product \(G \times H\) of two graphs \(G\) and \(H\) to be cordial. The Cartesian product of two cordial graphs of even sizes is then shown to be cordial. We show that the Cartesian products \(P_n \times P_n\) for all \(n \geq 2\) and \(P_n \times C_{4m}\) for all \(m\) and all odd \(n\) are cordial. The Cartesian product of two even trees of equal order such that one of them has a \(2\)-tail is shown to be cordial. We shall also prove that the composition \(C_n[K_2]\) for \(n \geq 4\) is cordial if and only if \(n \not = 2 \pmod{4}\). The cordiality of compositions involving trees, unicyclic graphs, and some other graphs are also investigated.

E. R. Lamken1
1Institute for Mathematics and its Applications University of Minnesota Minneapolis, MN.
Abstract:

A \(KS_2(v;1,\lambda)\) is called indecomposable if it is not isomorphic to the direct sum of a \(KS_2(v;1,\lambda_1)\) with a \(KS_2(v ;1,\lambda_2)\) for some \(\lambda_1\) and \(\lambda_2\) which add to \(\lambda\). In this note, we show that there exists an indecomposable \(KS_2(v;1,\lambda)\) for \(v \equiv 0 \pmod{2}\), \(v \geq 4\), and \(\lambda \geq 2\).

Shu-Shih Y. Wu1, Margaret B. Cozzens1
1Department of Mathematics Northeastern University Boston, MA 02115
Abstract:

A graph \(G\) is said to be \(m\)-neighbour-connected if the neighbour-connectivity of the graph, \(K(G) = m\). A graph \(G\) is said to be critically \(m\)-neighbour-connected if it is \(m\)-neighbour-connected and the removal of the closed neighbourhood of any one vertex yields an \((m-1)\)-neighbour-connected subgraph. In this paper, we give some upper bounds of the minimum size of the critically \(m\)-neighbour-connected graphs of any fixed order \(v\), and show that the number of edges in a minimum critically \(m\)-neighbour-connected graph with order \(v\) (a multiple of \(m\)) is \(\left\lceil\frac{1}{2}mv\right\rceil\).

Gerhard Behrendt 1
1Mathematisches Institut Universitat Tiibingen D-7400 Tubingen 1 Federal Republic of Germany
Abstract:

We classify the finite partially ordered sets which satisfy certain homogeneity conditions. One of the conditions considered is that the automorphism group of the partially ordered set acts multiply transitively on the set of elements of the same height.

Zhuguo Mo 1, Kenneth Williams2
1Computer and Engineering Services, Inc. 6964 Crooks Road Troy, Michigan 48098
2Computer Science Department Western Michigan University Kalamazoo, Michigan 49008 U.S.A.
Abstract:

Let \(G = (V, E)\) be a graph or digraph, and let \(r\) and \(s\) be two positive integers. A subset \(U\) of \(V\) is called an \((r, s)\) dominating set if for any \(v \in V – U\), there exists \(u \in U\) such that \(d(u,v) \leq r\) and for any \(u \in U\) there exists \(u’ \in U\) (\(u’ \neq u\)) for which \(d(u’,u) \leq s\). For graphs, a \((1,1)\)-dominating set is the same as a total dominating set. The \((r, s)\)-domination number \(\delta_{r,s}(G)\) of a graph or digraph \(G\) is the cardinality of a smallest \((r,s)\)-dominating set of \(G\). Various bounds on \(\delta_{r,s}(G)\) are established including that, for an arbitrary connected graph of order \(n \geq 2\), if \(s \leq r+1\) then \(\delta_{r,s}(G) \leq \max\left(\frac{2n}{r+s+1},2\right)\), and if \(s \geq r+1\) then \(\delta_{r,s}(G) < \max\left(\frac{n}{r+1},2\right)\). Both bounds are sharp.

J.A. Eccleston 1, Deborah J. Street2
1School of Information and Computing Sciences Bond University Queensland, Australia
2 Waite Agricultural Research Institute The University of Adelaide South Australia, Australia
Abstract:

Adjusted orthogonal row-column designs have certain desirable properties. In this paper we give a definition of adjusted orthogonal row-column designs, summarise the known designs, give some construction methods and indicate some open problems. We briefly consider the relationship between adjusted orthogonal row-column designs and orthogonal main effects block designs.

Omer Egecioglu1
1Department of Computer Science University of California Santa Barbara Santa Barbara, CA 93106
Abstract:

The Pfaffian of the symbols \(a_{ij}\) with \(i<j\) has a combinatorial interpretation as the signed weight generating function of perfect matchings in the complete graph. By properly specializing the variables, this generating function reduces to the signed weight generating function for the perfect matchings in an arbitrary simple graph. We construct a weight and sign preserving bijection between two appropriately constructed spaces of permutations: permutations with even cycles and pairs of involutions without fixed points. This bijection gives a purely combinatorial proof that the determinant of a zero axial skew-symmetric matrix is equal to the square of the Pfaffian.

M. H. Armanious1
1 Mansoura University Department of Mathematics Mansoura – Egypt
Abstract:

We construct nilpotent \(SQS\)-skeins of class \(n\), for any positive integer \(n\). These \(SQS\)-skeins are all subdirectly irreducible algebras. The nilpotent \(SQS\)-skeins of class \(n\), which are constructed in this paper, are also solvable of order \( \leq \frac{n+1}{2} \) if \(n\) is odd, and of order \(\leq 1+\frac{1}{2}n\) if \(n\) is even.

Rolf Rees 1
1Dept. Math, and Computer Science Mount Allison University
Abstract:

We employ a well-known class of designs to give a complete solution to the problem of determining the spectrum of uniform semiframes with block size two. As a corollary we prove that the complete graph \(K_{gu}\), admits a one-factorization with an orthogonal set of \(u\) disjoint sub-one-factorizations of \(K_g\) if and only if \(g\) is even and \(u\geq3\).

Tianbao Hao1
1 Department of Mathematics & Statistics Queen’s University Kingston, Ontario Canada K7L 3N6
Abstract:

This paper concerns the existence of graphs and digraphs with prescribed mean distance and the existence of graphs with prescribed mean local connectivity.

FE. Bennett1, Zhang Xuebin2, L. Zhu 2
1 Department of Mathematics Mount Saint Vincent University Halifax, Nova Scotia B3M 236 Canada
2Department of Mathematics Suzhou University Suzhou People’s Republic of China
Abstract:

Let \(v\), \(k\), and \(\lambda\) be positive integers. A \((v, k, \lambda)\)-Mendelsohn design (briefly \((v,k,\lambda)\)-MD) is a pair \((X,B)\) where \(X\) is a \(v\)-set (of points) and \(B\) is a collection of cyclically ordered \(k\)-subsets of \(X\) (called blocks) such that every ordered pair of points of \(X\) are consecutive in exactly \(\lambda\) blocks of \(B\). A set of $\delta$ distinct elements \(\{a_1,a_2,…,a_\delta\}\) is said to be cyclically ordered by \(a_1<a_2<…<a_k<a_1\) and the pair \(a_i,a_{i+t}\) are said to be \(t\)-apart in a cyclic \(k\)-tuple \((a_1,a_2,…,a_k)\) where \(i+ t\) is taken modulo \(k\). If for all \(t=1,2,…, k-1\), every ordered pair of points of \(X\) are \(t\)-apart in exactly \(\lambda\) blocks of \(B\), then the \((v,k,\lambda)\)-MD is called a perfect design and is denoted briefly by \((v,k,\lambda)\)-PMD. A necessary condition for the existence of a \((v,k,\lambda)\)-PMD is \(\lambda v(v-1)\equiv0\) (mod \(k\)). In this paper, we shall be concerned mainly with the case where \(k=4\). It will be shown that the necessary condition for the existence of a \((v,4,\lambda)\)-PMD, namely, \(\lambda v(v-1)\equiv0\) (mod \(4\)), is also sufficient, except for \(v=4\) and \(\lambda\) odd, \(v=8\) and \(\lambda=1\), and possibly excepting \(v=12\) and \(\lambda=1\). Apart from the existence of a \((12,4,1)\)-PMD, which remains very much in doubt, the problem of existence of \((v,4,\lambda)\)-PMDs is now completely settled.

D. de Caen1, D.A. Gregory1, I.G. Hughes1, D.L. Kreher 2
1Department of Mathematics and Statistics Queen’s University Kingston, Ontario, Canada K7L 3N6
2School of Computer Science Rochester Institute of Technology Rochester, N.Y. 14623
Abstract:

Let \(S\) and \(T\) be subsets of a finite group \(G with identity \(e\), We write \(G-e =ST\) if every non-identity element \(g\) can be written uniquely as \(g = st\) with \(s \in S\) and \(t \in T\). These near-factorizations are motivated by the combinatorial problem of
finding \((0 , 1)\)-matrix factorizations of the matrix \(J-I\). We derive some results on near-factors \(S\) and \(T\). For example, \(S\) and \(T\) each generate \(G\). Also, if \(G\) is abelian, then the automorphism \(g \rightarrow g^{-1}\) is a multiplier of both \(S\) and \(T\). If the elementary abelian group \(C_p^n\) (\(p\) an odd prime) is a homomorphic image of \(G\), then \(|S|^{p-1} \equiv |T|^{p-1} \equiv 1
(mod p)\). These structure theorems suggest that noncyclic abelian groups rarely have near-factorizations. Constructions of near-factorizations are given for cyclic groups and dihedral groups.

S. Klavzar1, M. Petkovsek 1
1Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Yugoslavia
Abstract:

We prove that the intersection of longest paths in a connected graph \(G\) is nonempty if and only if for every block \(B\) of \(G\) the longest paths in \(G\) which use at least one edge of \(B\) have nonempty intersection. This result is used to show that if every block of a graph \(G\) is Hamilton-connected, almost-Hamilton-connected, or a cycle then all longest paths in \(G\) intersect. (We call a bipartite graph almost-Hamilton-connected if every pair of vertices is connected by a path containing an entire bipartition set.) We also show that in a split graph all longest paths intersect. (A graph is split if there exists a partition of its vertex set into a stable set and a complete set.)

Luigia Berardi1, Franco Eugeni1
1Dipartimento di Ingegneria Elettrica L’ Aquila (ITA)
Abstract:

Blocking sets in little and large Mathieu designs, have all been characterized except the case \(S(5, 8, 24)\). The aim of this paper is to give the complete classification of blocking sets in this remaining case.

H.J. Veldman1
1 Faculty of Applied Mathematics University of Twente 7500 AE Enschede THE NETHERLANDS
Abstract:

For a graph \(G\), define \(\phi(G) = \min \{\max \{d(u), d(v)\} | d(u,v) = 2\}\) if \(G\) contains two vertices at distance 2, and \(\phi(G) = \infty\) otherwise. Fan proved that every 2-connected graph on \(n\) vertices with \(\phi(G) > \frac{1}{2}n\) is hamiltonian. Short proofs of this result and a number of analogues, some known, some new, are presented. Also, it is shown that if \(G\) is 2-connected, \(\phi(G) \geq \frac{1}{2}(n-i)\) and \(G – \{v \in V(G) | d(v) \geq \frac{1}{2} (n-i)\}\) has at least three components with more than \(i\) vertices, then \(G\) is hamiltonian (\(i \geq1\)).

Antoine C. Lobstein 1
1Centre National de la Recherche Scientifique, URA 251, Télécom Paris, Département Informatique, 46 rue Barrault, 75634 Paris Cedex 13, France.
Abstract:

We state here that, for modulus \(m\) odd and less than \(2^{29}+2^{27} – 1\), no (nontrivial) perfect binary arithmetic code, correcting two errors or more, exists (this is to be taken with respect to the Garcia-Rao modular distance). In particular, in the case \(m = 2^n \pm 1\), which is most frequently studied, no such code exists for \(m < 2^{33} – 1\).

D. G. Sarvate1
1 Department of Mathematics College of Charleston Charleston, South Carolina 29424 U.S.A.
Abstract:

Constructions of partially balanced incomplete block designs with three and four associate classes are given. The constructions use \(\epsilon\)-designs for \(t=6\) and \(t=8\).

Ahmed Assaf 1
1Department of Algebra, Combinatorics and Analysis Auburn University
Abstract:

Let \(X\) be a finite set of order \(mn\), and assume that the points of \(X\) are arranged in an array of size \(m \times n\). The columns of the array will be called groups.
In this paper we consider a new type of group divisible designs called modified group divisible designs in which each \(\{x,y\} \subseteq X\) such that \(x\) and \(y\) are neither in the same group nor in the same row occurs \(\lambda\) times. This problem was motivated by the problem of resolvable group divisible designs with \(k = 3\), \(\lambda = 2\) [1] , and other constructions of designs.

Zhang Xuebin1
1Department of Mathematics Suzhou University, Suzhou People’s Republic of China
Abstract:

FE. Bennett has proved that a \((v, 4, 1)\)-RPMD exists for every positive integer \(v \equiv 1 \pmod{4}\) with the possible exception of \(v = 33, 57, 93\) and \(133\). In this paper, we shall first introduce the concept of an incomplete PMD and use it to establish some construction methods for Mendelsohn designs; then we shall give the following results: (1) a \((v, 4, 1)\)-PMD exists for every positive integer \(v \equiv 0 \pmod{4}\) with the exception of \(v = 4\) and the possible exception of \(v = 8, 12\);(2) a \((v, 4, 1)\)-PMD exists if \(v = 57, 93\) or \(133\).

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;