Walter Carballosa1, José M. Rodriguez2, José M. Sigarreta1, Yadira Torres-Nufiez2
1Facultad de Matematicas Universidad Auténoma de Guerrero, Carlos E. Adame 5, Col. La Garita, Acapulco, Guerrero, México.
2Departamento de Matematicas Universidad Carlos HI de Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain
Abstract:

The alliance polynomial of a graph with order \(n\) and maximum degree \(\Delta\) is the polynomial \(A(\Gamma; x) = \sum_{k=-\delta_1}^{\delta_1}A_k(\Gamma) x^{n+k}\), where \(A_k(G)\) is the number of exact defensive \(k\)-alliances in \(G\). We provide an algorithm for computing the alliance polynomial. Furthermore, we obtain some properties of \(A(\Gamma; x)\) and its coefficients. In particular, we prove that the path, cycle, complete, and star graphs are characterized by their alliance polynomials. We also show that the alliance polynomial characterizes many graphs that are not distinguished by other usual polynomials of graphs.

Sizhong Zhou 1, Yang Xu 2, Fan Yang 1
1School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China
2Department of Mathematics, Qingdao Agricultural University, Qingdao, Shandong 266109, P. R. China
Abstract:

Let \(a\), \(b\), and \(k\) be three nonnegative integers with \(a \geq 2\) and \(b \geq a(k+1)+2\). A graph \(G\) is called a \(k\)-Hamiltonian graph if \(G – U\) contains a Hamiltonian cycle for every subset \(U \subseteq V(G)\) with \(|U| = k\). An \([a, b]\)-factor \(F\) of \(G\) is called a Hamiltonian \([a, b]\)-factor if \(F\) contains a Hamiltonian cycle. If \(G – U\) has a Hamiltonian \([a, b]\)-factor for every subset \(U \subseteq V(G)\) with \(|U| = k\), then we say that \(G\) admits a \(k\)-Hamiltonian \([a, b]\)-factor. Suppose that \(G\) is a \(k\)-Hamiltonian graph of order \(n\) with \(n \geq a+k+2\). In this paper, it is proved that \(G\) includes a \(k\)-Hamiltonian \([a, b]\)-factor if \(\delta(G) \geq a+k\) and \(t(G) \leq a-1+\frac{(a-1)(k+1)}{b-2}\).

R. Sundara Rajan1, Indra Rajasingh1, Micheal Arockiaraj2, T.M. Rajalaxmi3, B. Mahavir4
1School of Advanced Sciences, VIT University, Chennai, India, 600 127
2Department of Mathematics, Loyola College, Chennai, India, 600 034
3Department of Mathematics, SSN College of Engineering, Chennai, India, 603 110
4Department of Mathematics, A.M. Jain College, Chennai, India, 600 114
Abstract:

Graph embedding has been known as a powerful tool for implementation of parallel algorithms or simulation of different interconnection networks. An embedding \(f\) of a guest graph \(G\) into a host graph \(H\) is a bijection on the vertices such that each edge of \(G\) is mapped into a path of \(H\). In this paper, we introduce a graph called the generalized book and the main results obtained are: (1) For \(r \geq 3\), the minimum wirelength of embedding \(r\)-dimensional hypercube \(Q_r\) into the generalized book \(\mathrm{GB}[2^{r_1}, 2^{r_2}, 2^{r_3}]\), where \(r_1 + r_2 + r_3 = r\). (2) A linear time algorithm to compute the exact wirelength of embedding hypercube into generalized book. (3) An algorithm for embedding hypercube into generalized book with dilation 3, proving that the lower bound obtained by Manuel et al. [28] is sharp.

Taekyun Kim1, Dmitry V. Dolgy2, Dae San Kim3, Jong Jin Seo4
1Department of Mathematics, College of Science, Tianjin Polytechnic Uni- Versity, Tianjin City, 300387, China,
2Institute of Mathematics and Computer Science, Far Eastern Federal Uni- Versity, 690950 Vladivvostok, Russia
3Department Of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
4Department of Applied Mathematics, Pukyong National University, Busan, Republic Of Korea
Abstract:

In this paper, we present a new approach to the convolved Fibonacci numbers arising from the generating function of them and give some new and explicit identities for the convolved Fibonacci numbers.

Jianxin Wei1
1School of Mathematics and Information, Ludong University, Yantai 264025, P. R. China
Abstract:

The generalized Fibonacci cube \(Q_d(f)\) is the graph obtained from the hypercube \(Q_d\) by removing all vertices that contain a given binary word \(f\). A binary word \(f\) is called good if \(Q_d(f)\) is an isometric subgraph of \(Q_d\) for all \(d \geq 1\), and bad otherwise. A non-extendable sequence of contiguous equal digits in a word \(f\) is called a block of \(f\). The question to determine the good (bad) words consisting of at most three blocks was solved by Ilié, Klavžar, and Rho. This question is further studied in the present paper. All the good (bad) words consisting of four blocks are determined completely, and all bad \(2\)-isometric words among consisting of at most four blocks words are found to be \(1100\) and \(0011\).

Chiara Mancini1, Mauro Zannetti1
1Department of Industrial and Information Engineering and of Economics University of L’ Aquila Via G. Gronchi, 18 I-67100 L’ Aquila Italy
Abstract:

In this paper, we provide a construction of \(\mathrm{PG}(2,4)\) by a collage of \(\mathrm{AG}(2,3)\) and its dual \(\mathrm{DAG}(2,3)\). Moreover, we prove that the construction is unique.

Yu-hong Guo1
1 School of Mathematics and Statistics, Hexi University, Zhangye, Gansu, 734000, P.R. China
Abstract:

In this paper, we first present a combinatorial proof of the recurrence relation about the number of the inverse-conjugate compositions of \(2n+1\), \(n > 1\). And then we get some counting results about the inverse-conjugate compositions for special compositions. In particular, we show that the number of the inverse-conjugate compositions of \(4k+1\), \(k > 0\) with odd parts is \(2^k\), and provide an elegant combinatorial proof. Lastly, we give a relation between the number of the inverse-conjugate odd compositions of \(4k+1\) and the number of the self-inverse odd compositions of \(4k+1\).

S. Uygun1
1Department of Mathematics, Science and Art Faculty, Gaziantep University, Campus, 27310, Gaziantep, Turkey
Abstract:

In this study, by using Jacobsthal and Jacobsthal Lucas matrix sequences, we define \(k\)-Jacobsthal and \(k\)-Jacobsthal Lucas matrix sequences depending on one parameter \(k\). After that, by using two parameters \((s,t)\), we define \((s,t)\)-Jacobsthal and \((s,t)\)-Jacobsthal Lucas matrix sequences. And then, we establish combinatoric representations of all of these matrices.

Jing Jin1,2, Baogang Xu1
1linstitute of Mathematics, Schoo] of Mathematical Sciences Nanjing Normal University, Nanjing, 210023, China
2College of Taizhou, Nanjing Normal University, Taizhou, 225300, China
Abstract:

A graph \(G\) is \(1\)-planar if it can be embedded in the plane \(\mathbb{R}^2\) so that each edge of \(G\) is crossed by at most one other edge. In this paper, we show that each \(1\)-planar graph of maximum degree \(\Delta\) at least \(7\) with neither intersecting triangles nor chordal \(5\)-cycles admits a proper edge coloring with \(\Delta\) colors.

Shumin Zhang1
1School of Computer Technology, Qinghai Normal University, Xining, Oinghai 310008 ,China
Abstract:

Dirac showed that in a \((k-1)\)-connected graph there is a path through each \(k\) vertices. The path \(k\)-connectivity \(\pi_k(G)\) of a graph \(G\), which is a generalization of Dirac’s notion, was introduced by Hager in 1986. Recently, Mao introduced the concept of path \(k\)-edge-connectivity \(\omega_k(G)\) of a graph \(G\). Denote by \(G \circ H\) the lexicographic product of two graphs \(G\) and \(H\). In this paper, we prove that \(\omega_4(G \circ H) \geq \omega_4(G) |V(H)|\) for any two graphs \(G\) and \(H\). Moreover, the bound is sharp.

A. Elsonbaty1,2, K. Mohamed1,3
1Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah 41411, Saudi Arabia.
2Department of Mathematics, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
3Department of Mathematics, Faculty of Science, New Valley, Assiut University 71515, Egypt.
Abstract:

A graph \(G = (V(G), E(G))\) is even graceful and equivalently graceful, if there exists an injection \(f\) from the set of vertices \(V(G)\) to \(\{0, 1, 2, 3, 4, \ldots, 2|E(G)|\}\) such that when each edge \(uv\) is assigned the label \(|f(u) – f(v)|\), the resulting edge labels are \(2, 4, 6, \ldots, 2|E(G)|\). In this work, we use even graceful labeling to give a new proof for necessary and sufficient conditions for the gracefulness of the cycle graph. We extend this technique to odd graceful and super Fibonacci graceful labelings of cycle graphs via some number theoretic concept, called a balanced set of natural numbers.

Lili Song1, Lei Sun 1
1Department of Mathematics, Shandong Normal University Jinan 250014, China
Abstract:

A graph is \(1\)-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we prove that every \(1\)-planar graph without \(4\)-cycles or adjacent \(5\)-vertices is \(5\)-colorable.

Xia Zhang1
1 School of Mathematical Sciences, Shandong Normal University Jinan, Shandong, P.R. China, 250014
Abstract:

In previous researches on classification problems, there are some similar results obtained between \(f\)-coloring and \(g_c\)-coloring. In this article, the author shows that there always are coincident classification results for a regular simple graph \(G\) when the \(f\)-core and the \(g_c\)-core of \(G\) are same and \(f(v) = g(v)\) for each vertex \(v\) in the \(f\)-core (the \(g_c\)-core) of \(G\). However, it is not always coincident for nonregular simple graphs under the same conditions. In addition, the author obtains some new results on the classification problem of \(f\)-colorings for regular graphs. Based on the coincident correlation mentioned above, new results on the classification problem of \(g_c\)-colorings for regular graphs are deduced.

Murat Ersen BERBERLER1, Zeynep Nihan BERBERLER1
1Faculty of Science, Department of Computer Science, Dokuz Eylul University, 35160, lzmir/TURKEY
Abstract:

The integrity of a graph \(G = (V, E)\) is defined as \(I(G) = \min\{|S| + m(G-S): S \subseteq V(G)\}\), where \(m(G-S)\) denotes the order of the largest component in the graph \(G-S\). This is a better parameter to measure the stability of a network, as it takes into account both the amount of work done to damage the network and how badly the network is damaged. Computationally, it belongs to the class of intractable problems known as NP-hard. In this paper, we develop a heuristic algorithm to determine the integrity of a graph. Extensive computational experience on \(88\) randomly generated graphs ranging from \(20\%\) to \(90\%\) densities and from \(100\) to \(200\) vertices has shown that the proposed algorithm is very effective.

Sheng-Liang Yang1, Yan-Xue Xu1, Xiao Gao1
1Department of Applied Mathematics Lanzhou University of Technology Lanzhou, 730050, Gansu, PR China
Abstract:

The half of an infinite lower triangular matrix \(G = (g_{n,k})_{n,k\geq 0}\) is defined to be the infinite lower triangular matrix \(G^{(1)} = (g^{(1)}_{n,k \geq 0})\) such that \(g^{(1)}_{n,k} = g_{2n-k,n}\) for all \(n \geq k \geq 0\). In this paper, we will show that if \(G\) is a Riordan array, then its half \(G^{(1)}\) is also a Riordan array. We use Lagrange inversion theorem to characterize the generating functions of \(G^{(1)}\) in terms of the generating functions of \(G\). Consequently, a tight relation between \(G^{(1)}\) and the initial array \(G\) is given, hence it is possible to invert the process and rebuild the original Riordan array \(G\) from the array \(G^{(1)}\). If the process of taking half of a Riordan array \(G\) is iterated \(r\) times, then we obtain a Riordan array \(G^{(r)}\). The further relation between the result array \(G^{(r)}\) and the initial array \(G\) is also considered. Some examples and applications are presented.

Ling Xue1
1 Department of Information Engineering, Taishan Polytechnic, Tai’an, 271000, China
Abstract:

A graph \(G\) is list \(k\)-arborable if for any sets \(L(v)\) of cardinality at least \(k\) at its vertices, one can choose an element (color) for each vertex \(v\) from its list \(L(v)\) so that the subgraph induced by every color class is an acyclic graph (a forest). In the paper, it is proved that every planar graph with \(5\)-cycles not adjacent to \(3\)-cycles and \(4\)-cycles is list \(2\)-arborable.

R. Lakshmi1, G. Rajasekaran2, R. Sampathkumar3
1Department of Mathematics, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India.
2Department of Mathematics,Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India.
3Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar 608 002, India.
Abstract:

For two vertices \(u\) and \(v\) in a strong digraph \(D\), the strong distance between \(u\) and \(v\) is the minimum number of arcs of a strong subdigraph of \(D\) containing \(u\) and \(v\). The strong eccentricity of a vertex \(v\) of \(D\) is the strong distance between \(v\) and a vertex farthest from \(v\). The strong diameter (strong radius) of \(D\) is the maximum (minimum) strong eccentricity among all vertices of \(D\). The lower orientable strong diameter (lower orientable strong radius), \(\mathrm{sdiam}(G)\) (\(\mathrm{srad}(G)\)), of a 2-edge-connected graph \(G\) is the minimum strong diameter (minimum strong radius) over all strong orientations of \(G\). In this paper, a conjecture of Chen and Guo is disproved by proving \(\mathrm{sdiam}(K_{3} \square K_{3}) = \mathrm{sdiam}(K_{3} \square K_{4}) = 5\), \(\mathrm{sdiam}(K_{m} \square P_{n})\) is determined, \(\mathrm{sdiam}(G)\) and \(\mathrm{srad}(G)\) for cycle vertex multiplications are computed, and some results concerning \(\mathrm{sdiam}(G)\) are described.

Yantao Li1, Huiwen Cheng2, Qinghua Ma3
1College of Applied Arts and Science, Beijing Union University, Beijin 100091, P.R. China
2 Department of Mathematics, Beijing Haidian Adults University, Beijin 100083, P.R. China
3 College of Applied Arts and Science, Beijing Union University, Beigin 100081, P.R. China
Abstract:

The aim of this note is to present a short proof of a result of Alaeiyan et al. [Bull. Austral. Math. Soc.\( 77 (2008) 315-323;\)
Proc. Indian Acad. Sci., Math. Sci. \(119 (2009) 647-653\)] concerning the non-existence of cubic semisymmetric graphs of order \(8p\) or \(8p^2\), where \(p\) is a prime. In those two papers, the authors choose the heavy weaponry of covering techniques. Our proof relies on the analysis of the subgroup structure of the full automorphism group of the graph and the normal quotient graph theory.

Pengli Lu1, Yang Yang1
1School of Computer and Communication Lanzhou University of Technology Lanzhou, 730050, Gansu, P.R. China
Abstract:

Let \(G\) be a graph of order \(n\) with adjacency matrix \(A(G)\) and diagonal degree matrix \(D(G)\). The generalized characteristic polynomial of \(G\) is defined to be \(f_G(x,t) = \det (xI_n – (A(G) – tD(G)))\). The \(R\)-graph of \(G\), denoted by \(R(G)\), is obtained by adding a new vertex for each edge of \(G\) and joining each new vertex to both end vertices of the corresponding edge. The generalized \(R\)-vertex corona, denoted by \(R(G) \boxdot \wedge _i^n H\), is the graph obtained from \(R(G)\) and \(H\) by joining the \(i\)-th vertex of \(V(G)\) to every vertex of \(H\). In this paper, we determine the generalized characteristic polynomial of \(R(G) \boxdot \wedge _i^n H\). As applications, we get infinitely many pairs of generalized cospectral graphs, the number of spanning trees and Kirchhoff index of \(R(G) \boxdot\wedge _i^n H\).

Dingjun Lou1
1 Department of Computer Science Sun Yatsen University Guangzhou 510275 People’s Republic of China
Abstract:

In this paper, we introduce an \(O(n^2)\) time algorithm to determine the cyclic edge connectivity of a planar graph, where \(n\) is the order of the planar graph. This is the first correct square time algorithm for cyclic edge connectivity of planar graphs.

G. Dror1, A. Lev1, Y. Roditty1, R. Zigdon1
1School of Computer Sciences The Academic College of Tel-Aviv-Yaffo 2 Rabeinu Yeruham st., Tel-Aviv Israel 61083
Abstract:

Let \(G = (V, E)\), with \(|V| = n\), be a simple connected graph. An edge-colored graph \(G\) is rainbow edge-connected if any two vertices are connected by a path whose edges are colored by distinct colors. The rainbow connection number of a connected graph \(G\), denoted by \(rc(G)\), is the smallest number of colors that are needed in order to make \(G\) rainbow edge-connected. In this paper, we obtain tight bounds for \(rc(G)\). We use our results to generalize previous results for graphs with \(\delta(G) \geq 3\).

J.K. Sareen1, M. Rana1
1School of Mathematics and Computer Applications Thapar University Patiala-147004, Punjab, India
Abstract:

In this paper, we provide the 4-way combinatorial interpretations of some Rogers–Ramanujan type identities using partitions with “\(n + t\) copies of \(n\)”, lattice paths, \(k\)-partitions, and ordinary partitions.

Yasemin Tasyurdu1, Omir Deveci2
1Department of Mathematics, Faculty of Science and Art, Erzincan University, 24000 Erzincan, TURKEY
2Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, TURKEY
Abstract:

In this paper, we study the Fibonacci polynomials modulo \(m\) such that \(x^2 = x + 1\) and then we obtain miscellaneous properties of these sequences. Also, we extend the Fibonacci polynomials to the ring of complex numbers. We define the Fibonacci Polynomial-type orbits \(F^R_{(a,b)}(x) = \{x_i\}\), where \(R\) is a 2-generator ring and \((a,b)\) is a generating pair of the ring \(R\). Furthermore, we obtain the periods of the Fibonacci Polynomial-type orbits \(F^R_{(a,b)}(x)\) in finite 2-generator rings of order \(p^2\).

Yunshu Gao1, Lingxiu Wu1
1School of Mathematics and Computer Science, Ningxia University Yinchuan,750021, P. R. China
Abstract:

A theta graph is the union of three internally disjoint paths that have the same two distinct end vertices. We show that every graph of order \(n \geq 12\) and size at least\(\max\left\{\left\lceil\frac{3n+79}{2}\right\rceil,\left\lfloor\frac{11n-33}{2}\right\rfloor\right\}\) contains three disjoint theta graphs. As a corollary, every graph of order \(n \geq 12\) and size at least \(\max\left\{\left\lceil\frac{3n+79}{2}\right\rceil ,\left\lfloor\frac{11n-33}{2}\right\rfloor\right\}\) contains three disjoint cycles of even length. The lower bound on the size is sharp in general.

Li Wang1
1School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, 454000, China
Abstract:

A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. A semisymmetric graph must be bipartite whose automorphism group has two orbits of the same size on the vertices. One of our long-term goals is to determine all the semisymmetric graphs of order \(2p^3\), for any prime \(p\). All these graphs \(\Gamma\) with the automorphism group \(Aut(\Gamma)\), are divided into two subclasses: (I) \(Aut(\Gamma)\) acts unfaithfully on at least one bipart; and (II) \(Aut(\Gamma)\) acts faithfully on both biparts. In [9],[19] and [20], a complete classification was given for Subclass (I). In this paper, a partial classification is given for Subclass (II), when \(Aut(\Gamma)\) acts primitively on one bipart.

Xin Zhang1
1 School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
Abstract:

The notions of \(L\)-tree-coloring and list vertex arboricity of graphs are introduced in the paper, while a sufficient condition for a plane graph admitting an \(L\)-tree-coloring is given. Further, it is proved that every graph without \(K_{5}\)-minors or \(K_{3,3}\)-minors has list vertex arboricity at most \(3\), and this upper bound is sharp.

Zhen-Mu Hong1, Xinmin Hou2, Jiaao Li3, Yang Yang2
1School of Finance, Anhui University of Finance and Economics, Bengbu 233030, China.
2School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China.
3Department of Mathematics, West Virginia University, Morgantown, WV 26506, U.S.A.
Abstract:

A model for cleaning a graph with brushes was first introduced by Messinger, Nowakowski, and Pralat in 2008. Later, they focused on the problem of determining the maximum number of brushes needed to clean a graph. This maximum number of brushes needed to clean a graph in the model is called the broom number of the graph. In this paper, we show that the broom number of a graph is equal to the size of a maximum edge-cut of the graph, and prove the \(\mathcal{NP}\)-completeness of the problem of determining the broom number of a graph. As an application, we determine the broom number exactly for the Cartesian product of two graphs.

M.A. Seoud1, M.A. Salim1
1Department of Mathematics, Faculty of Science, Ain Shams University Abbassia, Cairo, Egypt
Abstract:

We give more results in mean cordial and harmonic mean labelings, such as: upper bounds for the number of edges of graphs of given orders for both labelings with direct results, labeling all trees of order \(\leq 9\) to be harmonic mean with the restriction of using the floor function of the definition, and labeling all graphs of order \(\leq 5\) that are harmonic mean graphs without using the label \(q + 1\) in labeling the vertices. Also, we give mean cordial labelings for some families of graphs.

Fuyuan Chen1
1Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui 233030, P.R. China
Abstract:

Linkage is very important in Very Large Scale Integration (VLSI) physical design. In this paper, we mainly study the relationship between minors and linkages. Thomassen conjectured that every \((2k + 2)\)-connected graph is \(k\)-linked. For \(k \geq 4\), \(K_{3k-1}\) with \(k\) disjoint edges deleted is a counterexample to this conjecture, however, it is still open for \(k = 3\). Thomas and Wollan proved that every \(6\)-connected graph on \(n\) vertices with \(5n – 14\) edges is \(3\)-linked. Hence they obtain that every \(10\)-connected graph is \(3\)-linked. Chen et al. showed that every \(6\)-connected graph with \(K_{9}^-\) as a minor is \(3\)-linked, and every \(7\)-connected graph with \(K_{9}^-\) as a minor is \((2,2k-1)\)-linked. Using a similar method, we prove that every \(8\)-connected graph with \(K_{2k+3}^-\) as a minor is \(4\)-linked, and every \((2k + 1)\)-connected graph with \(K_{2k+3}^-\) as a minor is \((2,2k – 1)\)-linked. Our results extend Chen et al.’s conclusions, improve Thomas and Wollan’s results, and moreover, they give a class of graphs that satisfy Thomassen’s conjecture for \(k = 4\).

Hsun Su1, Yuan-Kang Shih2, Shih-Yan Chen3, Shin-Shin Kao4
1 Department of Public Finance and Taxation, Takming University of Science and Technology, Taipei, Taiwan 11451, R.O.C.
2Intel NTU Connected Context Computing Center, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
3Taipei Municipal Bai Ling Senior High School, Taipei, Taiwan 11167, R.O.C.
4Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li City, Taiwan 82028, R.O.C.
Abstract:

Consider any undirected and simple graph \(G = (V, E)\), where \(V\) and \(E\) denote the vertex set and the edge set of \(G\), respectively. Let \(|G| = |V| = n \geq 3\). The well-known Ore’s theorem states that if \(\deg_G(u) + \deg_G(v) \geq n + k\) holds for each pair of nonadjacent vertices \(u\) and \(v\) of \(G\), then \(G\) is traceable for \(k = -1\), Hamiltonian for \(k = 0\), and Hamiltonian-connected for \(k = 1\). In this paper, we investigate any graph \(G\) with \(\deg_G(u) + \deg_G(v) \geq n – 1\) for any nonadjacent vertex pair \(\{u,v\}\) of \(G\), in particular. We call it the \((*)\) condition. We derive four graph families, \(\mathcal{H}_i\), \(1 \leq i \leq 4\), and prove that all graphs satisfying \((*)\) are Hamiltonian-connected unless \(G \in \bigcup_{i=1}^{4} \mathcal{H}_i\). We also establish a comprehensive theorem for \(G\) satisfying \((*)\), which shows that \(G\) is traceable, Hamiltonian, pancyclic, or Hamiltonian-connected unless \(G\) belongs to different subsets of \(\{\mathcal{H}_i | 1 \leq i \leq 4\}\), respectively.

A.R. Moghaddamfar1, S. Rahbariyan1, S.Navid Salehy2, S.Nima Salehy2
1Faculty of Mathematics, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran
2Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA.
Abstract:

Given a group \(G\), we define the power graph \(P(G)\) as follows: the vertices are the elements of \(G\) and two vertices \(x\) and \(y\) are joined by an edge if \(\langle x\rangle \subseteq \langle y \rangle\) or \(\langle y\rangle \subseteq \langle x \rangle\). Obviously, the power graph of any group is always connected, because the identity element of the group is adjacent to all other vertices. In the present paper, among other results, we will find the number of spanning trees of the power graph associated with specific finite groups. We also determine, up to isomorphism, the structure of a finite group \(G\) whose power graph has exactly \(n\) spanning trees, for \(n < 5^{3}\). Finally, we show that the alternating group \(A_5\) is uniquely determined by the tree-number of its power graph among all finite simple groups.

Haicheng Ma1,2, Wenhua Yang2, Xiafei Meng2, Shenggang Li2
1 Departinent of Mathematics, Qinghai Nationalities University, Xining, Qinghai 810007, P.R. China
2College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi 710062, P.R. China
Abstract:

Let \(G\) be a graph of order \(n\). The number of positive eigenvalues of \(G\) is called the positive inertia index of \(G\) and denoted by \(p(G)\). The minimum number of complete multipartite subgraphs in any complete multipartite graph edge decomposition of graph \(G\), in which the edge-induced subgraph of each edge subset of the decomposition is a complete multipartite graph, is denoted by \(\epsilon(G)\). In this paper, we prove \(\epsilon(G) \geq p(G)\) for any graph \(G\). Especially, if \(\epsilon(G) = 2\), then \(p(G) = 1\). We also characterize the graph \(G\) with \(p(G) = n – 2\).

Rundan Xing1
1School of Computer Science, Wuyi University, Jiangmen 529020, P.R. China
Abstract:

The distance spectral gap of a connected graph is defined as the difference between its first and second distance eigenvalues. In this note, the unique \(n\)-vertex trees with minimal and maximal distance spectral gaps, and the unique \(n\)-vertex unicyclic graph with minimal distance spectral gap are determined.

Dafik 1,2, Slamin 1,3, Dushyant Tanna4, Andre a Semanitovd-Fenovéikova5, Martin Bata5
1CGANT Research Group, University of Jember, Indonesia
2Department of Mathematics Education, FKIP, University of Jember, Indonesia
3Department of Information System, PSSI, University of Jember, Indonesia
4School of Mathematical and Physical Sciences, The University of Newcasile, Australia
5Department of Applied Mathematics and Informatics, Technical University, Kosice, Slovakia
Abstract:

A simple graph \(G = (V, E)\) admits an \(H\)-covering if every edge in \(E\) belongs to at least one subgraph of \(G\) isomorphic to a given graph \(H\). An \((a, d)\)-\(H\)-antimagic labeling of \(G\) admitting an \(H\)-covering is a bijective function \(f : V \cup E \rightarrow \{1, 2, \ldots, |V| + |E|\}\) such that, for all subgraphs \(H’\) of \(G\) isomorphic to \(H\), the \(H’\)-weights, \(wt(H’) = \sum_{v \in V(H’)} f(v) + \sum_{e \in E(H’)} f(e)\), constitute an arithmetic progression with the initial term \(a\) and the common difference \(d\). Such a labeling is called super if \(f(V) = \{1, 2, \ldots, |V|\}\). In this paper, we study the existence of super \((a, d)\)-\(H\)-antimagic labelings for graph operation \(G ^ H\), where \(G\) is a (super) \((b, d^*)\)-edge-antimagic total graph and \(H\) is a connected graph of order at least \(3\).

Yiqiao Wang1, Xiaoxue Hu2, Weifan Wang2
1School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
2 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
Abstract:

This article proves that the square of a Halin graph \(G\) with \(\Delta(G) = 5\) has the chromatic number \(6\). This gives a positive answer to an open problem in [Y. Wang, Distance two labelling of Halin graphs, Ars Combin. 114 (2014), 331–343].

Xun-Tuan Su1
1 School of Managements, Qufu Normal University, Rizhao 276800, China
Abstract:

There are many rectangular arrays whose \(n^{th}\) column is the \(n\)-fold convolution of the \(0^{th}\) column in combinatorics. For this type of rectangular arrays, we prove a formula for evaluating the determinant of certain submatrices, which was conjectured by Hoggatt and Bicknell. Our result unifies the determinant evaluation of submatrices of the rectangular arrays consisting of binomial coefficients, multinomial coefficients, Fibonacci numbers, Catalan numbers, generalized Catalan and Motzkin numbers.

Sezer Sorgun1
1NEVSEHIR Hact BEKTAg VELI UNIVERSITY, FACULTY OF ARTS AND SCIENCES, De- PARTMENT OF MATHEMATICS, 50300 NEVSEHIR, TURKEY
Abstract:

In this paper, we obtain the following upper bounds for the largest Laplacian graph eigenvalue: \[\mu \leq \max\limits_{i} \left\{\sqrt{ 2d_i (m_i + d_i) + n – 2d_i – 2 \sum\limits_{j:j\sim i}{ |N_i \cap N_j|}} \right\}\] where \(d_i\) and \(m_i\) are the degree of vertex \(i\) and the average degree of vertex \(i\), respectively; \(|N_i \cap N_j|\) is the number of common neighbors of vertices \(i\) and \(j\). We also compare this bound with some known upper bounds.

Meijin Luo1, Xi Li2
1 Department of Mathematics, Hechi University, Yizhou,Guangxi 546300, P.R. China
2Department of Basic Education, Shanxi Yuncheng Vocational College of Agriculture, Yuncheng,Shanxi 044000,P.R. China
Abstract:

A three-colored digraph \(D\) is primitive if and only if there exist nonnegative integers \(h\), \(k\), and \(v\) with \(h+k+v > 0\) such that for each pair \((i, j)\) of vertices there is an \((h, k, v)\)-walk in \(D\) from \(i\) to \(j\). The exponent of the primitive three-colored digraph \(D\) is defined to be the smallest value of \(h + k + v\) over all such \(h\), \(k\), and \(v\). In this paper, a class of special primitive three-colored digraphs with \(n\) vertices, consisting of one \(n\)-cycle and two \((n-1)\)-cycles, are considered. For the case \(a = c – 1\), some primitive conditions, the tight upper bound on the exponents, and the characterization of extremal three-colored digraphs are given.

Li Xiuli1,2, Tan Mingming3
1College of Information Science and Engineering, Ocean University of China, Qingdao 266000, China
2School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266000, China
3School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Republic of Singapore
Abstract:

Skew-quasi-cyclic codes over a finite field are viewed as skew-cyclic codes on a noncommutative ring of matrices over a finite field. This point of view gives a new construction of skew-quasi-cyclic codes. Let \(\mathbb{F}_q\) be the Galois field with \(q\) elements and \(\theta\) be an automorphism of \(\mathbb{F}_q\). We propose an approach to consider the relationship between left ideals in \(M_l(\mathbb{F}_q)[X, \theta]/(X^s – 1)\) and skew-quasi-cyclic codes of length \(ls\) and index \(l\) over \(\mathbb{F}_q\), under \(\theta\), which we denote by \(\theta\)-SQC codes (or SQC codes for short when there is no ambiguity). We introduce the construction of SQC codes from the reversible divisors of \(X^s – 1\) in \(M_l(\mathbb{F}_q)[X, \theta]\). In addition, we give an algorithm to search for the generator polynomials of general SQC codes.

D.A. Mojdeh1, B. Samadi2, S.M. Hosseini Moghaddam3
1Department of Mathematics, University of Mazandaran, Babolsar, Iran
2 Department of Mathematics, Arak University, Arak, Iran
3Qom Azad University, Qom, Iran
Abstract:

In this paper, we investigate the concepts of \(k\)-limited packing and \(k\)-tuple domination in graphs and give several bounds on the size of them. These bounds involve many well-known parameters of graphs. Also, we establish a connection between these concepts that implies some new results in this area. Finally, we improve many bounds in the literature.

Wensheng Li1, Huaming Xing2, Zhongsheng Huang1
1Dept. of Math. 8 Info. Sci., Langfang Teachers University, Langfang, 065000), China
2College of Science, Tianjin University of Science & Technology, Tianjin, 300222, China
Abstract:

Let \(G = (V, E)\) be a simple graph. A paired-dominating set of a graph \(G\) is a dominating set whose induced subgraph contains a perfect matching. The paired domination number of a graph \(G\), denoted by \(\gamma_p(G)\), is the minimum cardinality of a paired-dominating set in \(G\). In this paper, we study the paired domination number of generalized Petersen graphs \(P(n,2)\) and prove that for any integer \(n \geq 6\), \(\gamma_p(P(n, 2)) = 2 \left\lfloor \frac{n}{3} \right\rfloor + n \pmod{3}\).

Nader Jafari Rad1, Akbar Jahanbani1, Roslan Hasni2
1Department of Mathematics Shahrood University of Technology, Shahrood, Iran
2School of Informatics and Applied Mathematics UMT Kuala Terengganu, Terengganu, Malaysia
Abstract:

The Estrada index of a simple connected graph \(G\) of order \(n\) is defined as \(EE(G) = \sum_{i=1}^{n} e^{\lambda_i}\), where \(\lambda_1, \lambda_2, \ldots, \lambda_n\) are the eigenvalues of the adjacency matrix of \(G\). In this paper, we characterize all pentacyclic graphs of order \(n\) with maximal Estrada index.

Bart De Bruyn1
1Ghent University, Department of Mathematics, Krijgslaan 281 (522), B-9000 Gent, Belgium,
Abstract:

Let \(\Pi\) be a finite polar space of rank \(n \geq 2\) fully embedded into a projective space \(\Sigma\). In this note, we determine all tight sets of \(\Pi\) of the form \((\Sigma_1 \cap \mathcal{P}) \cup (\Sigma_2 \cap \mathcal{P})\), where \(\mathcal{P}\) denotes the point set of \(\Pi\) and \(\Sigma_1, \Sigma_2\) are two mutually disjoint subspaces of \(\Sigma\). In this way, we find two families of \(2\)-tight sets of elliptic polar spaces that were not described before in the literature.

Elif Tan1
1DEPARTMENT OF MATHEMATICS, ANKARA UNIVERSITY, ANKARA, TURKEY
Abstract:

In this paper, we define a new matrix identity for bi-periodic Fibonacci and Lucas numbers. By using the matrix method, we give simple proofs of several properties of these numbers. Moreover, we obtain a new binomial sum formula for bi-periodic Fibonacci and Lucas numbers, which generalize the former results.

Dinesh G.Sarvate1, Li Zhang2
1 COLLEGE OF CHARLESTON, DEPT. OF MATH., CHARLESTON, SC, 29424
2THE CITADEL, DepT. OF MATH. AND COMPUTER SCIENCE, CHARLESTON, SC, 29409
Abstract:

Hein and Sarvate show how to decompose \(\lambda\) copies of a complete graph \(K_n\), for some minimal value of \(\lambda\), into so-called LOE and OLE graphs. In this paper, we will show that for all possible values of \(\lambda\), the necessary conditions are sufficient for the LOE and OLE decompositions.

M. Afkhami1,2, M. Karimi3, K. Khashyarmanesh2,3
1Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran
2School of Mathematics, Institute for Research in Fundamental Sciences(IPM), P.O.Boz 19395-5746, Tehran, Iran
3Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran
Abstract:

Let \(R\) be a commutative ring. The regular digraph of ideals of \(R\), denoted by \(\mathcal{R}(R)\), is a digraph whose vertex-set is the set of all non-trivial ideals of \(R\) and, for every two distinct vertices \(I\) and \(J\), there is an arc from \(I\) to \(J\), whenever \(I\) contains a non-zero divisor of \(J\). In this paper, we investigate the planarity of \(\mathcal{R}(R)\). We also completely characterize the rings \(R\) such that \(\mathcal{R}(R)\) is a ring graph, and the situations under which the genus of \(\mathcal{R}(R)\) is finite. Moreover, we study the independence number and the girth of \(\mathcal{R}(R)\), and also we find all cases that \(\mathcal{R}(R)\) is bipartite.

Yong Zhang1,2, Wen Li1, Ruizhong Wei2
1School of Mathematics and Statistics, Yancheng Teachers University, Jiangsu 224002, PR China
2Department of Computer Science, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
Abstract:

In this paper, the existence of Yang Hui type magic squares of order \(n\) with \(t\)-powered sum (YMS(\(n\), \(t\))) for general \(t\) is investigated. Some constructions of YMS(\(n\), \(t\)) are obtained by using strongly symmetric self-orthogonal diagonal Latin squares and magic rectangles. Applying these constructions, it is proved that for an integer \(t > 1\) there exist both a symmetric elementary YMS(\(2^t\), \(2t – 2\)) and a symmetric elementary YMS(\(2^t – k\), \(2t\)) for odd \(k > 1\), which improves the known result on YMSs.

Zoran Z. Petrovié 1, Zoran S. Pucanovié2
1Faculty of Mathematics University of Belgrade Studentski trg 16 11000 Beograd, Serbia
2Faculty of Civil Engineering University of Belgrade Bulevar Kralja Aleksandra 73 11000 Beograd, Serbia
Abstract:

To gain a better understanding of clean rings and their relatives, the clean graph of a commutative ring with identity is introduced and its various properties are established. Further investigation of clean graphs leads to additional results concerning other classes of rings.

Guanglong Yu1, Shuguang Guo1, Mingqing Zhai2
1Department of Mathematics, Yancheng Teachers University, Yancheng, 224002, Jiangsu, P.R. China
2Department of Mathematics, Chuzhou University, Chuzhou, 239012, Anhui, P.R. China
Abstract:

For a connected graph, the distance spectral radius is the largest eigenvalue of its distance matrix. In this paper, of all trees with both given order and fixed diameter, the trees with the minimal distance spectral radius are completely characterized.

Ch. Eslahchi1, H.R. Maimani2,3, R. Torabi4, R. Tusserkani3
1 Department of Computer Science, Shahid Beheshti University, G.C. Tehran, Iran.
2Department of Mathematics, Shahid Rajaee Teacher Training University, Tehran, Iran
3School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran,Iran.
4School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran,iran.
Abstract:

In this paper, a domination-type parameter, called dynamical \(2\)-domination number, will be introduced. Let \(G = (V(G), E(G))\) be a graph. A subset \(D \subseteq V(G)\) is called a \(2\)-dominating set in \(G\) if every vertex in \(V(G) \setminus D\) is adjacent to at least two vertices in \(D\), and in this paper \(D\) is called a dynamical \(2\)-dominating set if there exists a sequence of sets \(D = V_0 \subseteq V_1 \subseteq V_2 \subseteq \cdots \subseteq V_k = V(G)\) such that, for each \(i\), \(V_{i-1}\) is a \(2\)-dominating set in \(\langle V_i \rangle\), the induced subgraph generated by \(V_i\). Also, for a given graph \(G\), the size of its dynamical \(2\)-dominating sets of minimum cardinality will be called the dynamical \(2\)-domination number of \(G\) and will be denoted by \(\bar{\gamma}_{2}(G)\). We study some basic properties of dynamical \(2\)-dominating sets and compute \(\bar{\gamma}_{2}(G)\) for some graph classes. Also, some results about \(\bar{\gamma}_{2}\) of a number of binary operations on graphs are proved. A characterization of graphs with extreme values of \(\bar{\gamma}_{2}\) is presented. Finally, we study this concept for trees and give an upper bound and a lower bound for the dynamical \(2\)-domination number of trees.

E-mail Alert

Add your e-mail address to receive upcoming issues of Ars Combinatoria.

Special Issues

The Combinatorial Press Editorial Office routinely extends invitations to scholars for the guest editing of Special Issues, focusing on topics of interest to the scientific community. We actively encourage proposals from our readers and authors, directly submitted to us, encompassing subjects within their respective fields of expertise. The Editorial Team, in conjunction with the Editor-in-Chief, will supervise the appointment of Guest Editors and scrutinize Special Issue proposals to ensure content relevance and appropriateness for the journal. To propose a Special Issue, kindly complete all required information for submission;